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Abstract

This exploratory, speculative "concept paper" explores a novel paradigm
(labeled ActPC-Chem) for biologically inspired, goal-guided artificial in-
telligence (AI) centered on a form of Discrete Active Predictive Coding
(ActPC) operating within an algorithmic chemistry of rewrite rules.

The central thesis of the ActPC-Chem approach is that general-intelligence-
capable cognitive structures and dynamics can emerge in a system where
both data and models are represented as evolving patterns of metagraph
rewrite rules, and where prediction errors, intrinsic and extrinsic rewards,
and semantic constraints guide the continual reorganization and refine-
ment of these rules.

In contrast to backpropagation-based approaches to training large AI
networks, ActPC-Chem makes it relatively straightforward to integrate
subsymbolic pattern recognition and behavior learning with symbolic and
causal reasoning in a unified framework.

We begin with a review of active predictive coding concepts and show
how they can be adapted to a discrete, rewrite-rule-based "algorithmic
chemistry" that supports goal-driven reinforcement. To accelerate the
evolution of discrete ActPC, we introduce the notion of discrete natural
gradients grounded in optimal transport geometry.

Using a virtual "robot bug" thought experiment, we illustrate how
such a system might self-organize to handle challenging tasks involving
delayed and context-dependent rewards, integrating causal rule inference
(AIRIS) and probabilistic logical abstraction (PLN) to discover and ex-
ploit conceptual patterns and causal constraints.

Next, we describe how continuous predictive coding neural networks,
which excel at handling noisy sensory data and motor control signals, can
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be coherently merged with the discrete ActPC substrate. Prediction errors
can flow across levels – continuous sensorimotor layers at the bottom and
discrete symbolic reasoning layers at the top – ensuring stable perception,
efficient action control, and logically coherent higher-level cognition.

Finally, we outline how these ideas might be extended to create a
transformer-like architecture that foregoes traditional backpropagation in
favor of rule-based transformations guided by ActPC. This layered archi-
tecture, supplemented with AIRIS and PLN, promises structured, multi-
modal, and logically consistent next-token predictions and narrative se-
quences.

ActPC-Chem is envisioned as a foundational "cognitive kernel" for ad-
vanced cognitive architectures, such as the OpenCog Hyperon system, in-
corporating essential elements of the PRIMUS cognitive architecture. By
adding further AI mechanisms from PRIMUS and related frameworks onto
ActPC-Chem, this kernel can be expanded into increasingly general and
powerful systems, pointing toward a plausible pathway toward human-
level artificial general intelligence (AGI) which can then self-modify on to
superintelligence (ASI).
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1 Introduction
These are unique times in the history of AI; AGI is finally taken seriously as a
scientific and engineering pursuit, and significant resources are now being put
into the quest to create AGI and even superintelligence, but there is still nothing
near a consensus of which approaches are likely to get us there.

Large neural networks – trained with massive datasets via backpropagation
– have achieved impressive successes across domains such as language modeling,
computer vision, and game-playing. Yet from an GI perspective, these models
remain limited (see [Goe23] for a detailed exposition on these limitations). They
struggle to exhibit robust causal reasoning, often produce logically inconsistent
"hallucinations" and rely on a batch-mode, non-localized training methodology
that in many ways contradicts basic principles of adaptive cognition. More-
over, working around these shortcomings via hybridizing these neural nets with
other AI tools is highly challenging – the current paradigm makes it infeasible
to seamlessly integrate symbolic knowledge, abstract reasoning or evolutionary
creativity with the neural learning process. These various issues are not in-
trinsic to the neural net paradigm generally speaking but have to do with the
specific (not very biologically realistic, as it happens) neural net architectures
and training approaches currently in use.

On the other hand, purely symbolic or logic-based AI approaches have of-
fered interpretability and direct representations of causality, but historically
have failed to scale up and adapt swiftly to the noisy complexity of real-world
tasks. Symbolic evolutionary methods have demonstrated impressive creativity,
but also have not been scaled to the level needed for widespread practical utility.

The longstanding dichotomy between subsymbolic pattern-learning and sym-
bolic abstraction is still with us today – our large subsymbolic networks, while
in some ways surprisingly good at reasoning, remain unable to extrapolate very
far beyond their training data; and our symbolic reasoning systems, while in
some cases very powerful, have not yet demonstrated the large-scale pattern
recognition and synthesis abilities of the best large neural networks.

A key challenge, then, is to discover an architectural principle that natu-
rally blends the various aspects of human-like general intelligence: subsymbolic
adaptability, symbolic and causal reasoning, evolutionary creativity and robust
experiential learning.

The PRIMUS cognitive architecture [GBD+23], which partially motivated
the OpenCog Hyperon AGI infrastructure, provides a complex and coherent
proposal regarding how to overcome these challenges and create a human-level
AGI capable of self-modifying itself into an ASI. However, PRIMUS is a quite
large and complicated design, with many aspects only partially specified, and
in setting about specifying and implementing PRIMUS in practice there is no
single clear best way to start.

Here we propose a specific approach to experiential learning for AGI systems
called ActPC-Chem, which makes sense on its own, but also constitutes a subset
of the PRIMUS architecture. In a PRIMUS context, we suggest, ActPC-Chem
may be considered as one of multiple possible "cognitive kernels" – autonomous
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and reasonably powerful learning algorithms that can control intelligent agents
on their own, but can also serve as hubs onto which the other parts of PRIMUS
can be attached, either all at once or incrementally.

While PRIMUS as a whole is more cognitively than biologically inspired,
ActPC-Chem draws heavily on both biology and chemistry.

The ActPC part of the name stands for Active Predictive Coding, which is
the application of Predictive Coding based learning in a reinforcement learning
like context. Continuous predictive coding models, such as those of Alex Oror-
bia [OK22] which serve as inspiration for much of the design proposed here,
act on the premise that intelligent agents continuously predict their inputs and
minimize surprise. Our contribution in this domain is to suggest ways of apply-
ing these Active PC learning principles to more discrete and symbolic domains,
especially in the context of self-organizing networks of rewrite rules.

The Chem part of the name refers to "algorithmic chemistry" – the creation
of "digital primordial soups" of small software codelets that transform percep-
tion inputs and generate output actions, but also transform each other. One
has codelets rewriting codelets into other codelets in a complex network of self-
transformation. This idea goes back decades [Fon90] and has been the subject
of slow-paced but ongoing research activity [Lig21], and in small experiments
it has demonstrated considerable power for self-organization and computational
creativity, but it has never been deployed at anywhere near the scale of mod-
ern neural networks. The closest thing to a scalable deployment of algorithm
chemistry has probably been some of the experiments with the AERA cogni-
tive architecture [Thó20], though AERA also has various special characteristics
distinguishing it from typical algorithmic chemistry.

Here, we bring ActPC and algorithmic chemistry together for the first time,
and propose Discrete Active Predictive Coding for Goal-Guided Algorithmic
Chemistry (ActPC-Chem), intended as a "cognitive kernel" for AGI-ish cogni-
tive architectures such as OpenCog Hyperon, and as a substrate into which ad-
ditional components from the PRIMUS cognitive framework can be integrated.

ActPC-Chem envisions a fluid "algorithmic chemistry" of rewrite rules: a
metagraph in which both data and models are represented as continually evolv-
ing metagraph transformation patterns, which ongoingly rewrite and transform
each other as well as external data in a sort of digital primordial soup. The
weights on these rewrite rules are then updated via a discrete version of Predic-
tive Coding based learning, providing a roughly RL style framework for guiding
the self-organizing evolution of the "rewrite rule primordial soup" toward a state
that provides utility to the agent in whose mind it lives.

This approach naturally lends itself to machine creativity. An algorithmic
chemistry is, by its nature, an autopoietic network where new patterns sponta-
neously emerge, combine, and compete. This provides a rich ground for novelty
generation and the serendipitous discovery of new strategies and concepts. By
combining such a generative, inventive substrate with predictive coding princi-
ples, we can channel this intrinsic creativity along pathways that reduce predic-
tion error and achieve specific goals.

In the ActPC-Chem approach, reinforcement learning (in a broad sense, in-
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cluding epistemic and instrumental rewards) is used to guide which "molecular"
rewrite-rule reactions persist and which vanish. Meanwhile, higher-level sym-
bolic and causal reasoning layers may be introduced via integrating additional
mechanisms like AIRIS and PLN, and ultimately the full range of cognitive
methods in the PRIMUS architecture (and more). Such methods can shape and
refine the emergent creativity of the network, ensuring that the system not only
produces new patterns but does so in a manner aligned with logical coherence
and causal correctness. The result is (we conjecture) a framework that inte-
grates the strengths of evolutionary, self-organizing processes with goal-driven,
reward-modulated learning and symbolic logical structure.

1.0.1 Plan of the Paper

We start by reviewing the concepts of active predictive coding and showing how
they can be adapted to discrete, rewrite-rule-based algorithmic chemistries that
support goal-driven behavior and reinforcement signals. Next, to accelerate
the evolution of discrete ActPC, we discuss the use of discrete natural gra-
dients derived from optimal transport geometry, providing a more stable and
geometry-aware update mechanism. Through a "virtual robot bug" thought
experiment, we demonstrate how the system might handle complex tasks in-
volving delayed and context-dependent rewards. Integrating causal rule infer-
ence (AIRIS) and probabilistic logical abstractions (PLN) enables the discovery
of subtle conceptual patterns and causal constraints that guide the system’s
autopoietic creativity toward effective, adaptive solutions.

We then describe how continuous predictive coding neural networks can be
merged with this discrete substrate, creating a hierarchical architecture where
continuous sensorimotor loops provide stable perceptions and actions at the
bottom, and discrete symbolic reasoning handles abstraction and causality at
the top. This synergy allows prediction errors to propagate smoothly across
levels, yielding a coherent multimodal pipeline that can continuously refine both
perceptual accuracy and strategic intelligence.

Finally, we outline how these ideas could be extended to form a transformer-
like model that forgoes formal neurons and backprop in favor of weighted rewrite
rules and ActPC-driven rule transformations. The resulting layered architecture
–supplemented by AIRIS’s causal logic, PLN’s abstractions, and continuous
PC’s robust multimodal integration – appears well suited to produce structured,
contextually rich next-token predictions.

Summing up in a general way: Beyond the various technical novelties, the
broader vision here is that by grounding AGI-capable cognitive processes in an
autopoietic, algorithmic-chemistry-like substrate guided by predictive coding,
we achieve a system with intrinsic flexibility, adaptability, and inventive power
at its core. This "cognitive kernel" may then serve as the base upon which
further PRIMUS methods and other AI techniques can be layered, ultimately
paving a plausible pathway toward human-level AGI and beyond.
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1.1 ActPC-Chem as one more PRIMUS Probabilization
A more PRIMUS-related way to summarize these ideas and how they fit into the
PRIMUS architecture might be: ActPC-Chem is the next in a series of "prob-
abilizations" of AI methods that has been carried out in an effort to leverage
probabilistic semantics to more effectively connect diverse techniques with vary-
ing mathematical and conceptual underpinnings into a coherent and synergetic
framework.

Predecessors in this vein have been

• PLN (Probabilistic Logic Networks), which makes highly general and ab-
stract forms of logic probabilistic, in a way that helps connect them to
observational data

• MOSES (Meta-Optimizing Semantic Evolutionary Search), which brings
(probabilistic) Estimation of Distribution Algorithms (EDAs) to evolu-
tionary program learning in a general and AGI-friendly way

• ECAN (Economic Attention Allocation), which can be viewed as a vari-
ation of attractor neural networks in which (the analogue of) activations
sum to 1, thus making them straightforwardly model-able as probabilities

Ororbia’s Predictive Coding approach has many interesting specificities to
it, but at a high level, it also has the general aspect of making the learning
operations within a neural network clearly probabilistically interpretable, much
more than is the case with backpropagation (prediction errors are measured via
entropies which are transformed probabilities).

Algorithmic chemistry and related approaches have been discussed in a
PRIMUS and OpenCog context for decades now, however ActPC-Chem is the
first time they have been connected in a clear way with a probabilistic semantics.
It has been proposed previously to use PLN and MOSES to reason probabilis-
tically about which patterns in algorithmic-chemistry networks seemed to be
more effective (part of the "Cogistry" proposal [Goe16]), but this is different
than using probabilistic methods as the core base-level method of "training" an
algorithmic chemistry network, which is what occurs in ActPC-Chem.

There are some echoes here of prior work combining the (algorithmic chem-
istry like) AERA architecture with Pei Wang’s NARS uncertain reasoning en-
gine [Rör22]. However, the lack of probabilistic semantics in NARS (among
other factors) meant that the math of algorithmic-chemistry-network learning
and the math of probabilistic reasoning could not be as tightly connected within
that system, as what we believe can be achieved using a common probabilistic
semantics in an ActPC-Chem context.

1.1.1 Probabilistic Graph Structured Lambda Theory as Potential
Initial Cognitive-Synergetic Glue

Having multiple components of a tightly-coupled hybrid cognitive architecture
(like PRIMUS) all use probabilistic semantics is a good start toward having
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the components all "speak the same language" in a manner that’s useful for
cooperative problem solving ("cognitive synergy"). However it doesn’t go far
enough.

Recent work on the MeTTa language (the AGI scripting language of the
OpenCog Hyperon system in which PRIMUS is being implemented) and the
semantics of PLN has led to the tentative conclusion that a specific logic for-
mulation called "Graph structured lambda theory" (GSLT) may be appropriate
and sufficient to take us a long way toward cognitive-synergetic AGI. There
are also clear ways to develop probabilistic semantics for GSLT, so that the
probability-as-cognitive-glue and GSLT-as-cognitive-glue concepts can work to-
gether very closely.

Conceptually, we believe AGI frameworks like Hyperon and PRIMUS should
be viewed as going beyond any particular mathematical formalisms, and as they
advance in general intelligence they must be able to adapt and conceive their own
foundations and formalisms rather than being stuck with those imposed by their
human creators. However, having the right seed formalisms is also important,
and our current hypothesis is that probabilistic GSLT may be a highly effective
initial formalism to use for cross-connection of the multiple diverse cognitive
modules of a tightly-integrated hybrid AGI system like PRIMUS.

Algorithmic chemistry involves a choice of what programming framework to
use for the "algorithms" that are chemically combining with each other; in a
Hyperon/PRIMUS context these are most naturally taken to be rewrite rules,
and that is the avenue developed here in ActPC-Chem. However, there can be
various sorts of rewrite rules with widely varying levels of generality. In the
simplistic concrete examples given here we will use very simple rewrite rules,
but our intuition is that as we experiment with these systems, we will probably
want more abstract rules than the ones in these examples. We will probably end
up with algorithmic chemistry codelets at some level of abstraction inbetween
the very simplistic examples given here, and the full power of GSLT. Within
the overall ActPC-Chem framework outlined here, there is quite a lot to be
experimented with.

2 ActPC-Chem: Discrete Active Predictive Cod-
ing for Goal-Guided Algorithmic Chemistry

Let us review what ActPC is, and how it may be adapted to a discrete setting,
and in particular a "metagraph rewrite rule soup" style algorithmic-chemistry
setting.

2.1 Brief Review of Active Predictive Coding
Active Predictive Coding (ActPC) [OK22] is a novel reinforcement learning (RL)
paradigm grounded in predictive coding principles and implemented through
Neural Generative Coding (NGC) circuits. Predictive coding, a biologically
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inspired theoretical framework, posits that the brain continuously predicts sen-
sory inputs and updates internal representations by reducing prediction errors.
Some inspiration has been drawn here from the conceptual neuroscience models
of Karl Friston [Fri09], however the technical and mathematical underpinnings
of contemporary ActPC work are significantly different from any of Friston’s
specific published proposals.

ActPC leverages the predictive-coding concept to guide action selection and
learning without relying on backpropagation-based gradient computations. In-
stead, it uses local, Hebbian-like learning rules to update synaptic weights,
making the approach both biologically plausible and computationally robust
(yet far more efficient than simplistic Hebbian learning heuristics).

Key high level motivations of the ActPC approach include:

1. Biological Plausibility: Traditional RL methods often depend on back-
propagation, a mechanism not readily aligned with known neural pro-
cesses. ActPC uses local error signals and Hebbian updates, closely mir-
roring how real neurons might learn.

2. Sparse Rewards: Many RL tasks, particularly in robotics, provide rewards
infrequently. Conventional backpropagation-based RL methods struggle
here due to unstable gradient signals. ActPC mitigates this by incorporat-
ing both exploratory (epistemic) and goal-oriented (instrumental) signals,
enabling effective learning in environments where explicit rewards are rare.

3. Gradient-Free Optimization: By entirely sidestepping backpropagation,
ActPC is not affected by issues like vanishing gradients and differentiabil-
ity constraints. This is especially useful when employing complex, biolog-
ically realistic neuron models or when scaling to large networks.

2.1.1 Neural Generative Coding (NGC) Framework:

Ororbia’s NGC framework is a specific instantiation of the ActPC idea, with
the following key aspects:

• Core Idea: NGC layers predict the activity of subsequent layers. The
difference between actual and predicted activity generates an error signal,
which drives synaptic updates.

• State Updates: Neuron states are iteratively updated based on error sig-
nals and local connectivity. A layer’s activity, zℓ, is refined through a
dynamic inference process where the error neurons eℓ = zℓ − ẑℓ guide
adjustments.

• Predictions: Predictions ẑℓ are generated from forward synaptic connec-
tions and memory terms mt, reflecting temporal context.

• Hebbian-Like Updates: Synaptic weights W and error synapses E are
adjusted locally using Hebbian-like rules that strengthen connections con-
tributing to accurate predictions.
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ActPC, as manifested in NGC, integrates multiple predictive circuits to
jointly solve the RL problem. Two key signals drive behavior:

• Epistemic Signal (Exploration): Encourages the agent to maximize pre-
diction errors, effectively probing uncertain states and learning from them.
This forms an intrinsic reward proportional to the squared prediction er-
rors.

• Instrumental Signal (Goal-Directed Behavior): Encourages the agent to
minimize prediction errors related to goal achievement. This aligns with
traditional RL’s objective of maximizing cumulative reward.

A combined reward function fuses these signals, balancing exploration and ex-
ploitation to achieve stable and robust policy learning.

This reward function drives action and reinforcement dynamics in a manner
roughly similar to classical RL based systems:

• Action Model: Motor outputs at are produced by an NGC-inspired motor-
action circuit, with actions bounded and generated via tanh-based non-
linearities.

• Policy Estimation: A policy circuit estimates expected returns qt. Target
values incorporate immediate rewards and future value estimates, analo-
gous to standard RL value functions.

Intended advantages of this framework over backpropagation-based RL in-
clude:

• Biological Plausibility: Local error-driven synaptic updates align with how
the brain might learn, eliminating the need for global gradient signals.

• Sparse Reward Robustness: The combined reward structure (epistemic +
instrumental) ensures that learning progresses even when external rewards
are rare.

• Gradient-Free: Without backpropagation, ActPC avoids vanishing gradi-
ents and is more compatible with diverse neuron and activation models.

• Dynamic Adaptation: The iterative inference and updating process allows
continuous adaptation in nonstationary environments.

Experiments reported in publications from Ororbia’s lab validate these ad-
vantages to a significant extent, but they have not yet been demonstrated in
large-scale practical or commercial applications. However it seems a promising
direction to explore that, via blending exploration-driven epistemic signals with
goal-oriented instrumental signals in ActPC, one can achieve stable, adaptive,
and efficient learning at a level of capability beyond conventional RL based
approaches.
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2.2 Toward Discrete ActPC: General Considerations
While the standard math of ActPC is continuous-variable, there is nothing in
the conceptual underpinnings of the method that especially favors continuous
over discrete implementation. For applications more toward the cognitive than
perception or actuation side, discrete versions of ActPC might have advantages,
in terms of naturalness of handling symbolic and abstract knowledge. Discrete
and continuous versions of ActPC would then have natural pathways for close
coordination due to their common foundation.

To make a discrete analogue of ActPC, one might adapt the underlying prin-
ciples of predictive coding and error-driven, local learning rules to a symbolic
domain where programs, rather than neural activations, serve as the generative
models. This discrete framework would learn to produce or refine programs so
that their outputs match observed data or achieve desired goals. Instead of using
continuous error neurons and Hebbian weight adjustments, this version would
rely on the manipulation of discrete structures – program instructions, rewrit-
ing rules, combinational logic – and measure error using information-theoretic
quantities.

2.2.1 Moving Toward a Discrete Variation

One direction for cashing out this idea might be:

• Programs as Generative Models: In the neural version of ActPC, each layer
predicts the activity of downstream layers. In a discrete setting, imagine
a program (e.g. a functional program, a logic program, or a sequence of
instructions) attempting to generate or predict the observed data from
an environment. Here, the program’s output is compared to the actual
observed output (or target state) at each step. The program thus serves
as a generative model, trying to "explain" the incoming data.

• Measuring Error via Information Theory:. Instead of using the difference
between predicted and actual neuron activations, we can measure the "er-
ror" as the discrepancy in information content. There are two clearly
promising approaches here:

– Shannon Information: Use measures like cross-entropy or Kullback-
Leibler (KL) divergence between the predicted probability distribu-
tion over possible outcomes and the actual observed outcome distri-
bution. The closer the predicted distribution is to the actual one, the
less "surprise" or "error."

– Algorithmic Information/Complexity: More ambitiously, one could
approximate the algorithmic complexity (Kolmogorov complexity)
difference between the program’s predicted output and the observed
output. For instance, if the observed data can be succinctly generated
by the program’s current form, the complexity is low, implying low
error. If the observed data is more complex relative to the program’s
predictions, the discrepancy is high, and so is the "error."
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While exact Kolmogorov complexity is not computable, practical approxi-
mations (e.g. via compression-based heuristics or learned generative mod-
els) could serve as a complexity-sensitive error measure.

• Local Rewriting Rules as "Synaptic" Updates:. Neural ActPC uses local,
Hebbian-like learning rules to adjust weights. In the discrete setting, we
can define a set of local rewriting rules or program transformations that
serve as the analogue of weight updates. For example:

– Replace an instruction with another that reduces the complexity of
explaining the current data.

– Insert a conditional branch that better partitions the input cases,
reducing overall surprise.

– Remove or generalize certain code segments to improve predictive
power or reduce unnecessary complexity.

Each rewrite is guided by whether it reduces the measured information-
theoretic error. Thus, these local code edits play the role of synaptic
adjustments, but in a symbolic domain.

2.2.2 Epistemic vs. Instrumental Signals in a Discrete Domain

In ActPC, learning is driven by two complementary signals: an epistemic (ex-
ploration) signal that rewards high prediction error (surprise), encouraging the
model to seek new informative states, and an instrumental (goal-oriented) sig-
nal that rewards states where the prediction error related to a desired goal is
minimized.

Similarly, in a program-learning context, the epistemic signal can encourage
the system to explore programs that increase its ability to compress or predict
previously unpredictable data. High epistemic reward might come from discov-
ering shorter or more elegant programs that generate a good internal model
of the environment. In an information-theoretic sense, this can be related to
seeking out complexity that can later be compressed: the system is incentivized
to explore patterns it cannot currently explain well, thereby gathering more
information.

The instrumental reward can be tied to how closely the program’s final
output matches a desired criterion (e.g., solving a puzzle, reaching a target
state, or producing a successful control sequence). Reducing this goal-related
complexity difference (or prediction error) provides a strong incentive to refine
the program’s logic so that it consistently produces the correct outcome.

The combined objective would blend these signals. The system tries to bal-
ance improving predictive coverage of the environment (epistemic) with achiev-
ing task success (instrumental).
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2.2.3 Incremental Learning for Discrete ActPC

Just as the neural ActPC avoids gradient based updates, this discrete analogue
would also be gradient-free. Instead of gradients, it uses local transformations
guided by whether they reduce the chosen measure of error. This could be
implemented as a form of hill-climbing or stochastic search over a space of
programs, e.g.:

• From a given program, propose local rewrites (akin to random mutations).

• Evaluate the new program’s predictive error (using Shannon or approxi-
mate algorithmic measures).

• Accept rewrites that reduce error and reject those that increase it, thus
performing a form of local, error-driven adaptation.

However there are many ways to organize this kinds of search, which may have
major influences on the efficiency and capability of the resultant framework.

2.2.4 Choices!

Summarizing based on the above conceptual considerations, there are many
choices to be made in crafting a discrete analogue of classical ActPC, e.g.

• Choice of Information Measure:

– Shannon-based measures (like KL divergence) are more tractable and
can be computed if you can model the environment’s probability
distributions.

– Approximating algorithmic complexity requires compression-based
metrics or other heuristics, which may be computationally expensive
but could yield more fundamental insights.

• Program Representation: Representing programs in a way that supports
local, meaning-preserving transformations is crucial. Functional or logic
programming languages, or graph-based intermediate representations, might
lend themselves well to well-defined local rewrites.

• Search and Optimization Methods:. Techniques like genetic programming,
Markov chain Monte Carlo (MCMC), or other search heuristics could be
employed to navigate the space of programs. The difference is that your
"fitness" function (akin to negative error) now explicitly encodes predictive
power and compressive capacity, rather than just a task-specific numerical
reward.
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2.3 ActPC-Chem: Discrete ActPC for Goal-Guided Al-
gorithmic Chemistry

Now we will get more specific, and propose a particular flavor of discrete ActPC
in the spirit of the above general considerations.

Let’s consider a self-referential "algorithmic chemistry" of metagraph rewrit-
ing rules, where the entire AI system-its data, its models, and the rules used
for rewriting-are all encoded as subgraphs within a larger metagraph. This sort
of system would be extremely natural to implement in the MeTTa language
[MGWV23] of the OpenCog Hyperon framework , and has been discussed as
part of the PRIMUS architecture, motivated largely by its potential for radical
computational creativity.

In this framework, one starts with:

• Metagraph: A graph of graphs, or more generally, a network of nodes
and edges where nodes and edges can themselves be graphs. Some parts
of this metagraph correspond to "data" (inputs, outputs, intermediate
states), while other parts correspond to "code" or "rules" (rewrite rules
that operate on the metagraph).

• Rewrite Rules: These are transformations that take a certain sub-metagraph
pattern (input pattern) and produce a new sub-metagraph pattern (out-
put pattern). Each rewrite rule can be represented as a pair: a "condition
pattern" and a "replacement pattern." Because rewrite rules themselves
are sub-metagraphs, the system can modify and rewrite its own rules.
This enables a fully self-referential system where learning and adaptation
emerge from rewriting the rewrite rules.

• Inputs and Outputs: Some nodes in the metagraph are designated as "ex-
ternal inputs" originating from the environment (e.g., sensor readings),
and some nodes are designated as "external outputs" that affect the envi-
ronment (e.g., actuator commands). The system applies its rewrite rules
iteratively to propagate and transform input patterns into output pat-
terns, effectively computing actions or predictions.

To translate the core features of ActPC into a metagraph rewriting context,
we consider:

• Generative Modeling via Rewrite Rules: The system’s current set of rewrite
rules constitutes its generative model of how inputs should transform into
outputs. If the system is intended to predict future states of the environ-
ment or determine the best actions given inputs, its rewrite rules encode
these transformations. Applying the rules to the input sub-metagraph
ideally should produce sub-metagraphs that match observed or desired
outputs.

• Collective Rewrite Rule Activity is Critical: Key to understand here is
that we are viewing the rewrite rules as atomic elements of large "virtual
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chemical solutions" – so it’s the statistical properties of the outputs of a
large number of rewrite rules that are important, not any single output
of any particular rule. In this sense we are thinking of the rewrite rules
vaguely similarly to neurons in a neural network, which each individual
neuron is generally of limited significance and the collective result of the
whole neural network is the key thing.

• Errors and Information-Theoretic Measures: Instead of computing a nu-
meric difference (as in neural net predictive coding), we define an error
measure in terms of the divergence between what the rewrite rules gener-
ate and what is actually observed. Two possible measures:

– Shannon Information Measures: Compute something like the cross-
entropy or KL divergence between the probability distributions im-
plied by the rewrite rules and the actual observed structures in the
metagraph. If the system’s rewrite rules, when stochastically applied,
predict a certain pattern of outputs, and the observed outputs differ,
the resulting "surprise" or information gain is our error.

– Approximate Algorithmic Information Measures: More ambitiously,
approximate the algorithmic complexity (e.g., via compression-based
methods) of describing the observed data relative to the generative
rewriting rules. If the current rule set succinctly "compresses" and re-
produces the observed patterns, error is low. If the observed patterns
are more complex than what the current rule set can easily generate,
the discrepancy indicates higher complexity and thus higher error.

One way or another, this error acts as the "prediction error" signal anal-
ogous to the difference between predicted and actual neural activations in
PC.

• Local Learning via Rule Rewrites: In neural ActPC, weights are adjusted
locally based on error signals. In the metagraph scenario, learning cor-
responds to locally rewriting the rewrite rules themselves. Each rule is
represented as a sub-metagraph; to learn, we propose modifications to
these sub-metagraphs:

– Add, remove, or generalize pattern matches.

– Simplify or elaborate the replacement patterns.

– Introduce conditional structures that branch differently based on de-
tected subpatterns.

• Each candidate modification (rewrite of a rewrite rule) is evaluated by ap-
plying the modified rules to input states and measuring the new information-
theoretic error. If the change reduces error, we retain it; otherwise, we
reject or revert it. This is a local, gradient-free update analogous to
Hebbian-like synaptic changes, but now operating on discrete structures.
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2.3.1 Epistemic and Instrumental Signals

The two types of reward signals would behave familiarly in this setting:

• Epistemic Signal (Exploration): The system is rewarded for discovering
new rewrite rules that reduce its uncertainty or surprise about the envi-
ronment. If the environment data is currently not wellcompressed by the
model, introducing rewrite rules that better "explain" or "compress" these
patterns yields a positive epistemic reward. This encourages the system
to explore more complex or detailed rules to handle new patterns.

• Instrumental Signal (Goal Achievement): Some output patterns corre-
spond to achieving a goal (e.g., producing the correct actuator commands
to solve a robotic task). The system receives an instrumental reward
for rewriting rules that reduce the complexity/distance between predicted
outputs and desired outputs. For example, if the environment’s input-
output mapping is more easily generated by a simpler set of rewrite rules
after a change, that’s a gain in instrumental reward.

One can think of the entire system as a chemical soup of rewrite rules, where
rules "react" with the metagraph and with each other. The "reactions" that
survive and propagate are those that yield lower information-theoretic error and
higher combined rewards. Over time:

• Rules that fail to reduce error or help achieve goals are effectively "extin-
guished" or replaced.

• Rules that reduce complexity, improve predictive accuracy, or achieve bet-
ter outcomes stabilize and become more prevalent.

This creates a self-organizing process, an "algorithmic chemistry" of meta-
rules evolving toward better predictive and goal-achieving capability.

2.3.2 Self-Modification and Bootstrapping

Because rewrite rules can rewrite other rewrite rules, the system can develop
meta-level strategies. For example, it can invent "metarules" that:

• Identify overly complex or uncompressed regions of the metagraph.

• Rewrite those rules in ways known to reduce complexity.

• Introduce structured macros or higher-level abstractions that simplify
large portions of the metagraph.

The concept is that, over time, such bootstrapping leads to a hierarchical struc-
ture of models-akin to how predictive coding hierarchies form in neural networks.
The system might evolve layers of rewriting rules, where top-level meta-rules
govern the structure and complexity of lower-level rules, guiding them to form
simpler, more coherent generative explanations of the environment.

This framework is what we call ActPC-Chem – discrete ActPC applied to
rewrite-rule algorithmic chemistry.
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2.3.3 Similarities to AERA

Kristinn Thorisson’s AERA (Autocatalytic Endogenous Reflective Architec-
ture) architecture [Thó20] involves self-programming, modular models that pre-
dict and learn incrementally. The proposed ActPC-Chem design dovetails with
this idea in multiple ways:

• In AERA, models predict future events and adjust themselves to improve
predictions. Similarly, in the algorithmic chemistry scenario, rewrite rules
continuously evolve to better predict and generate target patterns.

• The environment, input patterns, and desired outcomes form constraints
on the rewriting process. The system’s emergent codebase (the set of
rewrite rules) is always under pressure to become more compressive and
more effective.

• Much like AERA’s self-reflective modeling, the metagraph rewriting sys-
tem is reflective: it treats its own rules as data to be improved upon. The
loop of predict → measure error → locally rewrite rules → improve pre-
dictions creates a dynamic, incremental learning process without explicit
gradients.

AERA, however, makes some specific commitments regarding rewrite rule
representation, execution, learning and attention which are not necessary for the
general concept of "ActPC on rewrite rules", and which don’t always gel natu-
rally with the mathematics of NPC nor with other tools within PRIMUS/Hyperon.

2.4 Discrete ActPC for Goal-Guided Algorithmic Chem-
istry: A Naive Formalization

We will now elaborate one possible way to more precisely formulate an "ActPC-
Chem" system – a system of equations analogous to Ororbia’s ActPC, but
for a discrete, algorithmic-chemistry style metagraph rewriting system with an
information-theoretic error measure. The system is more abstract and involves
nondifferentiable, discrete updates, but we can still write down analogous math-
ematical relationships.

We will start, here, with a somewhat algorithmically naive (and perhaps
overly inefficient) approach, then in later sections make it more sophisticated
via introducing appropriate notions of gradient on probability distributions over
discrete sample spaces.

2.4.1 Notation and Setup

Consider the following setup:

• Metagraph: At time step t, we have a metagraph Gt. This metagraph
includes, among other portions, two two critical sub-metagraphs:

19



– Input Subgraph Gin
t : Nodes/edges designated as external inputs

from the environment at time t.

– Output Subgraph Gout
t : Nodes/edges designated as external outputs

that the system produces.

• Rewrite Rules: The system maintains a set of rewrite rules Rt = {ri}Ni=1.
Each rule ri is itself a sub-metagraph that specifies how to transform one
sub-pattern into another:

ri : P
(in)
i → P

(out)
i

where P
(in )
i and P

(out )
i are sub-metagraph patterns.

The generative process naturally corresponding to this setup is straight-
forward: Applying the rewrite rules Rt to Gin

t generates a predicted output
structure Ĝout

t .
This can be viewed as:

Ĝout
t = Γ

(
Rt, G

in
t

)
where Γ is the generative operator that repeatedly matches P (in)

i of each applica-
ble ri and rewrites it into P

(out)
i , until no further rewrites apply or a termination

condition is met.
The environment provides the actual observed output configuration Gout

t at
time t.

Distribution of Patterns : Assume the system can be stochastic (using
a stochastic selection rule for choosing which rules to activate, which would
be the natural approach in a PRIMUS context) and/or that we can derive a
probability distribution over certain output patterns m based on how often they
appear under the rewrite rules. We can then look at a distribution like:

pt(m) = P
(
m | Rt, G

in
t

)
, qt(m) = P

(
m | Gout

t

)
where pt(m) is the predicted probability (or frequency) of pattern m given the
current rewrite rules, and qt(m) is the observed distribution from the actual
environment.

This distribution is the key to applying ActPC based ideas to the rewrite rule
soup. As noted above, it is critical that we are viewing individual rewrite rules
as less essential, and focusing attention on the collective statistical behaviors of
the whole rewrite rule population and its subpopulations.
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Stochastic Rule Selection : The most natural way to manage stochastic
rule selection in a PRIMUS context would be using some form of ECAN atten-
tion allocation to update STI (short-term importance) values associated with
the Atoms in the Atomspace metagraph representing individual rewrite rules.
Those rules with small prediction error would get an STI stimulus, which would
then feed into the overall STI formula to adjust the STI level of the rules.

The probabilistic semantics of ECAN intersects nicely with the probabilistic
semantics of ActPC here, in ways that could be elaborated in detail. Prior
experimental work using natural gradients to accelerate ECAN [IG11] might
also end up relevant here, and could be interestingly synergized with ideas to be
presented below on natural gradients for accelerating learning in ActPC-Chem.

Simple Error Measure : Given this probabilistic setup, we define an information-
theoretic error measure. A natural choice is a divergence between the observed
and predicted distributions. For instance, we can use the Kullback-Leibler (KL)
divergence:

et = DKL (qt∥pt) =
∑
m

qt(m) [log qt(m)− log pt(m)]

This et serves as the "prediction error" analogous to the difference between
predicted and actual states in neural ActPC.

2.4.2 Rewards (Epistemic and Instrumental)

We can define two forms of reward that guide how we modify the rewrite rules:

• Instrumental Reward
(
rintt

)
: Encourages the system to produce outputs

that achieve a certain goal. This is analogous to the traditional RL reward.
We can tie it directly to reducing the error:

rintt = −et
• Epistemic Reward (rept ) : Encourages the system to explore patterns that

it does not currently compress or predict well. One way is to reward
complexity reduction or "surprise" that leads to better future modeling.
For simplicity, let’s say the epistemic reward is proportional to the raw
complexity or unexpectedness:

rept =
∑
m

qt(m) log
1

pt(m)

One could normalize and scale this measure in various ways, but the idea
stands that epistemic reward encourages exploration of patterns that are
currently poorly predicted.

The combined reward can then be:

rt = αintr
int
t + αepr

ep
t
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2.4.3 Update of Rewrite Rules

The key difference from neural ActPC is that we do not have differentiable
parameters. Instead, we have discrete structures ri. Learning means rewriting
these rewrite rules to reduce et.

Define a "neighborhood" of small changes to each rewrite rule ri. Such
changes might include:

• Slightly altering P
(in )
i or P

(out)
i .

• Adding or removing conditions.

• Replacing a sub-pattern with a more general or more specific pattern.

Let N (ri) be a set of candidate modifications of rule ri. As a crude initial
stab, we could attempt to find a new rule r′i ∈ N (ri) that reduces the error:

ri ← argmin
r′i∈N (ri)

et (Rt\ {ri} ∪ {r′i})

for each i. This is rough, inefficient discrete analogy to a gradient descent
step. Instead of computing gradients, we do local search over candidate rule
modifications. If none of the modifications reduce the error, we may leave ri
unchanged at this step or attempt stochastic replacements.

A little later on, we will explore ways of replacing this with a more efficient
approach, leveraging discrete versions of the natural gradient.

2.4.4 Iterative Inference and Update Cycle

In the natural core iteration of this kind of system, the steps are:

1. Inference (Prediction):

Ĝout
t = Γ

(
Rt, G

in
t

)
2. Error Computation: Derive distributions pt(m) and qt(m) from Ĝout

t and
Gout

t , and compute

et = DKL (qt∥pt)

3. Compute Rewards:

rintt = −et, rept =
∑
m

qt(m) log
1

pt(m)
, rt = αintr

int
t + αepr

ep
t

4. Rule Update: As a simplistic initial stab, one might try the following. For
each ri ∈ Rt :

22



ri ← argmin
r′i∈N (ri)

et (Rt\ {ri} ∪ {r′i})

If such a r′i reduces the error, accept it. Otherwise, leave ri as is or consider
a probabilistic acceptance criterion.

Over time, these iterative updates change Rt to better predict (and thus
lower et ), and to discover more compact, goal-directed rewrite rule sets. This
leads to a self-organizing system that refines its generative models (the rewrite
rules) for handling the input-output mapping in a manner analogous to pre-
dictive coding, but in a discrete, information-theoretic, metagraph rewriting
domain.

While these are more schematic procedures than closed-form equations, the
structure closely parallels the logic of ActPC:

• State and Prediction: Ĝout
t = Γ

(
Rt, G

in
t

)
• Error ( Surprise): et = DKL (qt∥pt)

• Local Updates: ri ← argminr′i et over local neighborhoods

This provides a conceptual and notational framework for extending ActPC-
like principles into a fully discrete, self-referential "algorithmic chemistry" of
metagraph rewriting rules.

2.5 A Toy Example
Toy Scenario: Consider a simple reinforcement learning (RL) problem where
an agent must navigate a 1D world (a line of cells) to reach a goal state. The
environment is very simple:

• Environment: A line of cells numbered from 0 to 3.

• Initial State: The agent always starts at cell 0.

• Goal State: The goal is cell 3.

• Actions: The agent can move either Right (+1) or Left (-1), but since the
start is at 0 , initially moving left is either disallowed or just keeps the
agent in place if it tries it.

• Reward: The agent receives: +1 if it reaches cell 3, 0 otherwise.

The problem: The agent needs to figure out a pattern of actions from cell 0
to cell 3 that yields a reward, starting with no prior knowledge.

This is an extremely dumb example and is used here just to give a first
notion of how to connect the somewhat abstract ideas and formalisms in the
previous section with some specific scenario.
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2.5.1 Representing the System as Rule Rewriting over a Metagraph:

1. Metagraph Structure:

• We have a metagraph Gt at each timestep t.

• There is a special "input" subgraph Gin
t containing:

• A node labeled "State" with a value indicating the current cell num-
ber.

• We want to produce an "output" subgraph Gout
t :

• A node labeled "Action" with a value "Right" or "Left."

2. Rewrite Rules as Generative Models:

• We store a set of rewrite rules Rt = {ri} that look at the current
"State" node and produce an "Action" node.

• Example initial rules (totally random guess at the start):

– r1 : If you see State = s, rewrite it as State = s; Action = Right.
– r2 : If you see State = s, rewrite it as State = s; Action = Left.

Initially, these rules might be too generic or conflict with each other. The
system will try to refine them.

3. Stochastic Application of Rules:

• Given the input subgraph with State = s, the system picks a rewrite
rule from Rt to produce Action.

• At the start, imagine it randomly picks actions since it has no pref-
erence.

4. Observed Outcome and Error: After the agent takes the chosen action,
the environment updates the state:

• If the agent was at state 0 and took action Right, it moves to 1.

• If at state 1 and goes Right, moves to 2; from 2 Right, moves to 3
and gets a reward of +1 .

After the environment moves, we get a new observed "State" node for the
next step, and at the end of an episode (or each step), we know if we got
a reward.

To measure error, we consider the probability distributions over outcomes
implied by our rewrite rules. For simplicity, suppose we define:

• pt(m) : The probability distribution over (State, Action) pairs the model
predicts based on its rules.

• qt(m) : The observed distribution of outcomes after many runs.
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If we run multiple episodes or steps and compare predicted vs. observed
frequencies, we can compute a KL divergence et = DKL (qt∥pt). The system
tries to minimize this divergence: it wants its rewrite rules to "explain" the
successful paths leading to reward.

2.5.2 Instrumental and Epistemic Rewards:

The two kinds of reward may be manifested in this example as follows:

• Instrumental Reward: If the agent reaches cell 3, it receives +1 . We tie
this to reducing the error between predicted success and actual success.
The better the rules lead to reaching cell 3, the lower the error (since the
system’s internal prediction would converge on a strategy that yields a
high probability of correct actions leading to the goal).

• Epistemic Reward: If the current rules fail to predict certain transitions
(for example, the agent keeps thinking that going left is good but it never
leads to reward), there is high surprise. The system is encouraged to find
a better set of rewrite rules that "compress" or "explain" the pathway
to the goal. This might mean introducing new, more specific rules that
map State=0 to Action=Right with higher certainty, reducing the unpre-
dictability in outcomes.

Combined:

rt = αint (−et) + αep( surprise measure )

here et is related to how off the model’s predicted distribution is from the ob-
served one. Minimizing et and balancing exploration (epistemic) vs. exploita-
tion (instrumental) leads the rewrite rules to evolve.

2.5.3 Example Rewrite Rule Updates

Initially:

r1 : ( State = s)→ ( State = s; Action = Right )

r2 : ( State = s)→ ( State = s; Action = Left )

After this, the system might find that always going Right from 0 leads it
through 1→ 2→ 3, and thus to a reward. Over multiple trials, it observes that
sequences of Right moves yield high reward.

To reduce KL divergence (error) and increase instrumental reward, it may
then specialize the rules, and e.g. perhaps introduce a new rule r3 that says:

r3 : ( State = 0)→ ( State = 0; Action = Right )

Similarly:
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r4 : ( State = 1)→ ( State = 1; Action = Right )

r5 : ( State = 2)→ ( State = 2; Action = Right )

Now, applying these more specialized rules produces a deterministic policy:
from 0 → Right, from 1 → Right, from 2 → Right. This yields a guaranteed
reward once cell 3 is reached, lowering the KL divergence between predicted and
observed outcomes (since the model now "predicts" that following its rewrite
rules always leads to success, which matches what is observed).

If the system tries other modifications, such as:

r6 : ( State = 0)→ ( State = 0; Action = Left )

it will see that this leads to less reward, higher discrepancy, and thus higher
error. Such a rewrite will be rejected or eventually "unlearned."

2.5.4 Discrete Update Step:

Each learning iteration might be:

1. Apply current rules to pick an action at the current state.

2. Execute action, observe next state and whether a reward was obtained.

3. Estimate qt(m) (the observed pattern distribution) vs. pt(m) (implied by
the current rule set).

4. Compute et = DKL (qt∥pt) and rewards rintt , rept .

5. Propose local changes to rules ri (e.g., specialize a rule to a particular
state, remove a bad rule, etc.).

6. For each proposed change, recalculate et if that change were made. If et
(or the combined reward) improves, accept the change.

Over iterations, the rules become increasingly aligned with a policy that
leads to the goal.

2.5.5 Example Recap:

In this toy RL problem, the discrete ActPC-like system:

• Starts with generic, uncertain rewrite rules.

• Interacts with the environment by applying these rules to produce actions.

• Measures how well the predicted outcomes match the observed outcomes
and how well it achieves the goal.

• Iteratively refines its rewrite rules to minimize information-theoretic error
and maximize reward.
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• Ends up discovering a simple, deterministic rewrite policy mapping states
to "Right" actions that lead it from state 0 to state 3, achieving maximum
reward with minimal error.

This demonstrates how the discrete approach – treating policies as rewrite
rules in a metagraph –can solve a simple RL problem via incremental self-
modification informed by information-theoretic errors, much like ActPC does in
a neural domain.

2.6 Incorporating Natural Gradients
We have presented a concrete instantiation of the general notion of discrete
ActPC in the context of rewrite-rule algorithmic chemistry. However the spe-
cific algorithmic approach given above has some obvious inefficiencies to it.
Specifically, the method of search for error-reducing variations of a rewrite rule
proposed above is inefficient, involving brute-force search across the neighbor-
hood of the rule.

We will explore here a route to making discrete ActPC-like approaches more
efficient by leveraging ideas from discrete optimal transport (DOT) and the
Wasserstein natural gradient flow. The aim is to replace a naive local rule-
update step with a more geometrically informed optimization step that respects
the underlying structure of the space of rewrite rules, potentially leading to
more stable and meaningful learning dynamics.

2.6.1 Context Recap

In the discrete ActPC scenario, we have:

• A set of rewrite rules Rt = {ri} defining how input patterns are trans-
formed into output patterns.

• A probability distribution pt over certain outcomes or patterns generated
by these rules. Alternatively, we can represent the agent’s model (its policy
or generative structure) as a probability distribution pt over the space of
possible rewrite rules or their configurations.

• A loss function F (p) that might encode prediction error, complexity, or a
combination of epistemic and instrumental factors.

The update mechanism involves adjusting rewrite rules to reduce an information-
theoretic error measure. Originally, we considered a simple local-search method:
propose local modifications and accept those that reduce the error. However, an
appealing alternative may be to introduce a DOT-inspired Wasserstein gradient
approach to enable search to move in a direction that respects the underlying
geometry of rewrite-rule space.
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2.6.2 Incorporating the Wasserstein Natural Gradient

We now explain how to extend our discrete ActPC using the approach to Wasser-
stein natural gradient over probability distributions with discrete sample spaces
presented in [LM18].

Parameterizing the Distribution Over Rules: . First, let’s define a pa-
rameter vector ξ that parameterizes the probability distribution p(ξ) over the
set of rewrite rules or rule configurations. For instance, ξ might describe a cat-
egorical distribution over different candidate rewrite rules or a set of weights
encoding how often certain patterns are used.

The optimization target is to minimize a loss:

F (p(ξ))

which could be a KL divergence between predicted and observed patterns, or a
combined reward objective as in ActPC.

Ground Metric on Rewrite Rules: . To apply the Wasserstein gradient,
we need a ground metric ωij on the discrete space of rewrite rules. Think of
each rewrite rule ri as a node in a graph, and ωij as the "cost" of transporting
probability mass from rule ri to rule rj . This metric encodes structural similar-
ities or dissimilarities between rules-for example, how similar the input/output
patterns they produce are, or how closely related they are in terms of complexity
or function.

Such a graph G = (V,E) over the discrete space of rules allows us to define
a weighted Laplacian L(p) and related operators for discrete OT.

Wasserstein Geometry and Gradient Flow: In classical gradient-based
updates, we would do:

ξk+1 = ξk − η∇ξF (p (ξk))

However, this does not consider the geometric structure of the space of prob-
ability distributions over rules.

Using the Wasserstein natural gradient flow, we incorporate the geometry
defined by the Wasserstein metric. The update rule becomes:

dξ

dt
= −G(ξ)−1∇ξF (p(ξ))

wwhere G(ξ) is a metric tensor induced by the Wasserstein geometry. Con-
cretely:

• Construct the weighted Laplacian L(p(ξ)) from the graph and the current
distribution p(ξ).
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• Compute the Jacobian Jξ of the mapping from parameters ξ to the dis-
tribution p(ξ)

• Form:

G(ξ) = JT
ξ L(p(ξ))†Jξ

where L(p(ξ))† is a pseudoinverse of the weighted Laplacian. This ensures
that the gradient update takes into account the optimal transport geom-
etry, effectively transporting probability mass in a way that respects the
"ground metric" ωij .

Discrete Update Steps (Forward Euler): A practical update step might
be:

ξk+1 = ξk − hG (ξk)
−1∇ξF (p (ξk))

Here:

• ∇ξF (p (ξk)) is the parameter-space gradient of the loss.

• G (ξk) is computed from the current distribution and the rule-space ge-
ometry.

• h is a step size.

This update uses the Wasserstein metric to ensure that when we shift prob-
ability mass between different rewrite rules, we do so optimally with respect to
the defined costs ωij .

Backward Euler (JKO Scheme) for Stability: For improved stability,
especially when dealing with non-smooth or complex loss landscapes, we could
use a JKO (Jordan-Kinderlehrer-Otto) scheme:

ξk+1 = argmin
ξ

[
F (p(ξ)) +

Dist (ξ, ξk)
2

2h

]
where Dist (ξ, ξk) is the Wasserstein distance between p(ξ) and p (ξk). This
solves a discrete optimal transport problem at each step to find the next pa-
rameter configuration that best balances minimizing the loss and staying close
(in Wasserstein sense) to the current distribution.
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2.6.3 Intuition and Benefits

By incorporating the Wasserstein geometry as suggested, the idea is to:

• Instead of making arbitrary local changes to rewrite rules and checking if
the error decreases, we get a direction of change that moves probability
mass between rules in a globally coherent manner.

• If two rewrite rules are "close" in the sense of ωij , probability mass is
more easily shifted between them, leading to smoother adaptation of the
model.

• The process respects the underlying structure of the rule space, leading
to potentially faster convergence and more meaningful intermediate solu-
tions, rather than random jumps in the discrete space.

2.6.4 The Discrete Measure-Dependent Laplacian

Now we dig a little further into the math of the Wasserstein approach, in par-
ticular the key matter of the discrete gradient involved.

The Laplacian in this discrete optimal transport (DOT) setting is a weighted,
measure-dependent graph Laplacian constructed from a graph whose nodes rep-
resent states (e.g. rewrite rules) and edges encode the "ground metric" between
these states. The crucial difference from a standard graph Laplacian is that
it incorporates the current probability distribution p over states, making it
context-dependent.

Step-by-Step Definition:

1. Nodes and Edges: Consider a finite set of states (for example, the rewrite
rules) indexed by i = 1, . . . , N . These states form the nodes of a graph
G = (V,E).

2. Ground Metric Weights: Each edge (i, j) ∈ E is assigned a weight ωij > 0
that encodes the "distance" or "cost" of moving probability mass between
states i and j. This ωij is your ground metric on the discrete space.

3. Probability Distribution p : At any given time, you have a probability
distribution p = (p1, p2, . . . , pN ) over the nodes (states). The distribution
reflects how likely or how much probability mass is currently assigned to
each state.

4. Gradient and Divergence on a Graph: In the discrete setting, the gradient
and divergence operators are defined on node-level functions Φ : V → R
and on distributions p. For an edge (i, j) , the "gradient" of Φ is given by:

∇GΦij = ωij (Φi − Φj)
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The "divergence" of a vector field (here represented by p∇GΦ ) at node i
is:

(divG (p∇GΦ))i =
∑

j:(i,j)∈E

ωij (pi + pj) (Φi − Φj)

5. Measure-Dependent Laplacian: The Laplacian L(p) arises as the operator
that relates Φ to divG (p∇GΦ). For each node i :

(L(p)Φ)i = − (divG (p∇GΦ))i

By substituting the divergence definition, we get:

(L(p)Φ)i =
∑

j:(i,j)∈E

ωij (pi + pj) (Φi − Φj)

A key point here is that: Unlike a standard graph Laplacian L = D −W
that depends only on the graph structure, this operator depends on both the
structure ( ωij ) and the current distribution p. As p changes during the opti-
mization process, the Laplacian L(p) also changes.

In optimal transport formulations, the probability distribution p influences
the "cost" of moving mass. The measure-dependent Laplacian captures how
"resistance" to moving probability mass changes with the current distribution.
If pi and pj are large, it may be "easier" to move probability between states i
and j because they already hold substantial probability mass; the operator L(p)
encodes this dynamic transport geometry.

When computing the Wasserstein natural gradient flow, we invert or pseu-
doinvert L(p) (or related constructs) to define a Riemannian metric on the space
of parameters ξ. This gives:

G(ξ) = JT
ξ L(p(ξ))†Jξ

where Jξ is the Jacobian of the parameterization from ξ to p(ξ).
In summary:

• You start with a graph encoding state-to-state distances ωij .

• Given a distribution p, you build a measure-dependent Laplacian L(p)
that incorporates both the graph’s structure and the current distribution.

• This operator is then used in defining and computing the Wasserstein
natural gradients for updating the system’s parameters in a way that
respects the underlying transport geometry.
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2.6.5 Simplistic Example Scenario:

Let’s flesh this out briefly in a specific example, the very simplistic toy RL
problem we discussed above:

• Define nodes in a graph representing different candidate rewrite rules (e.g.,
"From State = 0 → Action=Right," "From State=1 → Action=Left,"
etc.).

• Assign a ground metric ωij based on some similarity measure between
rules (e.g., how similar the states and actions they use are).

• Start with a uniform distribution p(ξ) over rules.

• Compute the Wasserstein gradient step using the current distribution and
the loss (the KL divergence or reward-based objective).

• The update will "transport" probability mass from less successful rules to
more promising ones in a principled manner, guided by the geometry of
the rule space.

Over iterations, the system converges to a distribution of rewrite rules that
better solve the RL task, but the process is now smoother and more informed
by the structure of the problem, rather than just local ad-hoc modifications.

Overall: By integrating discrete optimal transport ideas into the discrete
ActPC framework, we replace naive gradient or local search steps with Wasserstein-
based natural gradient flows. This yields a more principled and potentially more
efficient update mechanism. The resulting system respects the underlying ge-
ometry and relationships between rewrite rules, can incorporate domain knowl-
edge through the choice of the ground metric ωij , and ultimately should yield
more stable and meaningful learning dynamics in discrete, structured RL and
program-derivation tasks.

2.6.6 Recap of ActPC-Chem Process Using Natural Gradient

To recap the natural gradient approach to ActPC-Chem, then: We represent
the distribution over rewrite rules by parameters ξ. The rules Rt induce p(ξ).
To update ξ, we use a Wasserstein natural gradient:

dξ

dt
= −G(ξ)−1∇ξF (p(ξ))

where F could be the negative combined reward (or the error), and G(ξ) is
derived from a ground metric on the rule space (via a weighted Laplacian).

The discrete step update looks like:

ξk+1 = ξk − hG (ξk)
−1∇ξF (p (ξk)) .

Crude pseudocode suitable for testing out simple versions of this framework
this might look like:
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Pseudocode

Initialization:

# Initialize metagraph G with input nodes defined
G_in = initialize_input_nodes(env)
G_out = None
# Initialize rewrite rules R
R = initialize_rewrite_rules() # e.g., random or generic rules
# Initialize parameters xi that encode distribution over rules
xi = initialize_params(R)

Training Loop:

for iteration in range(max_iterations):
# 1. Generate output by applying rules to input
G_out = apply_rules(G_in, R) # Produces predicted output pattern
predicted_distribution = derive_distribution(G_out, R)
# 2. Observe actual environment outcome and form observed distribution
observed_distribution = derive_observed_distribution(env, G_in)
# 3. Compute error and rewards
e_t = KL_divergence(observed_distribution, predicted_distribution)
r_int = -e_t
r_ep = compute_surprise(observed_distribution, predicted_distribution)
r_t = alpha_int * r_int + alpha_ep * r_ep
F_value = -r_t # if we view F as a loss
# 4. Compute gradient of F w.r.t. parameters xi
grad_F = compute_gradient_of_F(F_value, xi, R)
# 5. Construct G(xi) metric via Wasserstein geometry
# This involves:
# - Defining a graph of rules with ground metric omega_ij
# - Computing a weighted Laplacian L(p(xi))
# - G(xi) = J_xi^T L(p(xi))^dagger J_xi
G_xi = compute_wasserstein_metric(xi, R)
# 6. Update xi using the Wasserstein natural gradient step
delta_xi = - h * invert(G_xi) * grad_F
xi = xi + delta_xi
# 7. Update rewrite rules R according to new xi distribution
R = update_rules_from_params(xi, R)
# 8. (Optional) Resample environment or input for next iteration
G_in = next_input_state(env)

Details of Key Steps:

• apply_rules(G_in, R) : Uses pattern matching to apply rewrite rules from
R to the input graph until no more rewrites apply, yielding a predicted
output graph.
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• derive_distribution(G_out, R) : Computes a distribution over possible
outputs (or internal states) based on how R could have generated G_out.

• KL_divergence(obs_dist, pred_dist) : Standard KL divergence between
observed and predicted distributions.

• compute_gradient_of_F(F_value, xi, R) : Numerically approximates or
analytically computes how changing xi affects F (requires a parameteri-
zation of how xi controls rule selection probabilities).

• compute_wasserstein_metric(xi, R) : Constructs the ground metric ω−ij
over rewrite rules, forms Laplacian, computes pseudo-inverse, and then
forms G(xi).

• update_rules_from_params(xi, R) : Adjusts the set or weights of rewrite
rules so that applying them stochastically corresponds to the distribution
p(xi).

2.7 Example Scenario: Virtual Bug with Grabber Arm
Let us illustrate these abstract ideas via a slightly less simplistic example than
our above three-cell 1D lattice: a virtual bug in a 2D grid seeking to find food
and avoid poison.

Environment Setup:

• A 2D grid: Some cells contain food (F), others are empty (N), and some
have poison (P).

• The bug sees a local input pattern: its own position (x, y), what’s in the
cell it faces, and what’s in its hand (empty or holding something).

• Actions: Move forward, move backward, turn left, turn right, grab an item
if available.

Initial Rewrite Rules:

• Initially, rewrite rules may be extremely generic, e.g.:

• r1 : If state pattern includes (Bug sees cell C), produce action (Move
Forward).

• r2 : If state pattern includes (Bug sees cell C), produce action (Turn Left).
These rules don’t differentiate between F, N, or P. The distribution over
these rules might be uniform, causing random actions.
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Adapting via Discrete ActPC:

• After several episodes, the bug receives different outcomes:

• When it moves onto a cell with food and grabs it, eventually obtaining a
positive env_reward.

• When it grabs poison, it suffers a negative env_reward.

• When it does random moves, it sees unpredictability and higher error.

Through the iterative process:

1. The predicted and observed distributions pt and qt diverge if the bug’s
actions are not aligned with acquiring food.

2. The system computes et and thus receives negative instrumental reward
when predictions fail and positive when it finds a stable action sequence
leading to food.

3. Applying Wasserstein updates: The parameter ξ shifts probability mass
towards rewrite rules that were activated during successful outcomes. For
example, if from a certain state (Bug sees F ahead), choosing (Move For-
ward, Grab) leads to high reward and low surprise, the update will shift
mass to a specialized rewrite rule:

rfood : ( Bugsees F )→ ( MoveForward, Grab )

By defining the ground metric ωij , similar rules (like those involving small
modifications of Move Forward or conditions on F) are easier to reach from the
initial rules, guiding a smoother transition in rule space.

Over time, the rewrite rules become more specialized:

• From (Bug sees F), it learns to (Move Forward, Grab).

• From (Bug sees P), it may learn to (Turn Right) or (Move Away).

As the distribution over rules evolves, the agent’s policy improves, leading
to consistent food gathering and minimized error. The discrete Laplacian en-
sures that changes in rule distributions account for the structural relationships
encoded by ωij .

2.8 A Slightly More Complex Toy Example
In the above example, the system adapted by becoming more specialized –
e.g., learning a rule like "If there is an item at ( x, y ) that looks exactly like
known food, then go and grab it." Let us now consider a similar but slightly
subtler scenario: food and poison share common low-level features (color, shape,
texture) and cannot be distinguished by any single feature alone. Instead, it’s
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a combination of features that determines whether something is food or poison.
The system must learn to classify items by observing which combinations lead
to rewards (food) and which lead to penalties (poison).

In essence, the rewrite rules must evolve to perform something akin to a
logical classification function over feature combinations, rather than merely re-
fine single-step mappings. This involves introducing abstraction: the network
should create rules that identify and leverage combinations of features, and per-
haps form intermediate symbolic categories (e.g. "FeaturePatternA") that can
then be used in higher-level rules.

2.8.1 Initial State (Simple Rules):

Initially, the system might have only simplistic rewrite rules like:

• r_generic: (Sees item at (x,y), features: {F1, F2, F3...}) -> (Move For-
ward, Grab) or

• r_generic_poison: (Sees item at (x,y), features: {F1, F2, F3...}) -> (Move
Backward)

These rules are too generic. They do not differentiate the subtle combina-
tions of features. The network tries these rules but obtains inconsistent results.
Sometimes it grabs poison and is penalized, sometimes it grabs food and is
rewarded. The resulting prediction error and reward mismatch drive rule adap-
tation.

2.8.2 Local Rewriting and Abstraction Emergence

The system explores local modifications to rules. In addition to specializing
rules (e.g., restricting a rule to apply only if a certain feature is present), the
system can also compose and abstract features. For instance, from an initially
flat set of features {Color=Red, Shape=Round, Texture=Smooth}, it might
introduce new intermediate labels in its rule conditions:

Example evolutionary steps:

Start to form conditional patterns:

r_new1: (Sees item with (Color=Red AND Shape=Round)) ->
define intermediate label PatternA

This creates a new node/sub-metagraph pattern representing the combined con-
cept "PatternA" that stands for the conjunction of (Red, Round). Similarly,
another rewrite step might produce:

r_new2: (Sees item with (Color=Green AND Shape=Square)) ->
define intermediate label PatternB
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Over time, these intermediate labels become "category" nodes inside the meta-
graph. They represent learned abstractions-feature combinations that consis-
tently correlate with certain outcomes.

2.8.3 Hierarchical Rule Sets

The network can then rewrite high-level rules in terms of these newly created
intermediate patterns:

r_food_candidate: (Sees item with PatternA AND Texture=Smooth)
-> classify as FOOD_TYPE_A

r\_poison\_candidate: (Sees item with PatternB AND Texture=Rough)
-> classify as POISON\_TYPE\_B

The idea is that the rewrite rules start encoding conditional checks that go be-
yond direct observation. They build up a small hierarchy of category nodes
that represent combinations of features. In turn, these categories form a bridge
between raw features and the final "food or poison" decision.

2.8.4 Reward-Driven Abstraction Refinement

During RL-like learning, the system tries actions based on these categories:

• If (PatternA, Texture=Smooth) => FOOD_TYPE_A consistently leads
to gaining reward when the system takes a "grab" action, the rule that
classifies (PatternA, Texture=Smooth) as FOOD becomes more probable
and stable.

• If (PatternB, Texture=Rough) leads to penalties when grabbed, the sys-
tem will rewrite or adjust the rules so that items matching that combina-
tion are treated as poison.

Over many episodes, the rewrite rules evolve from a flat, feature-level decision-
making approach to a more layered, hierarchical approach:

• Bottom layer: Rules that combine raw features into intermediate patterns.

• Middle layer: Rules that combine these patterns with additional features
to form stable category labels (e.g. FOOD_TYPE_A, POISON_TYPE_B).

• Top layer: Rules that map these category labels to actions (grab, avoid).

2.8.5 Mechanics of Abstraction via Rewriting

The rewriting system can have meta-rules that govern how new categories are
introduced. For example:
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• If a certain conjunction of features frequently leads to a higher reward,
the system proposes a new category node to represent that conjunction.

• If a certain feature combination leads to unpredictable outcomes, it tries
different factorization patterns (splitting the combination into sub-patterns,
removing or adding features) and evaluates which factorization yields lower
overall prediction error.

This process could be guided by the same information-theoretic and reward-
based signals that drive basic rewrite selection. Instead of only refining existing
rules, the system now also rewrites the form of the conditions by grouping
features, effectively performing a kind of discrete "feature extraction."

2.8.6 Abstract vs. Specialized

Initially, specialization looks like the easiest path: restrict a rule to a single
known feature. However, specialization alone can’t solve the classification prob-
lem if no single feature is discriminative. The rewrite system must "invent"
or "discover" intermediate abstractions by combining features. This is akin to
feature engineering at the symbolic level.

When a single rule specialized to "Red items" still yields inconsistent re-
wards, the system tries a local rewrite step that says: "Consider both Color and
Shape together." Another rewrite step might say: "Consider Color, Shape, and
Texture." Among these attempts, the system retains those rewrites that reduce
KL divergence between predicted and observed distributions and/or improve
the expected reward.

Through this iterative process, what emerges is a set of more abstract rules:
they no longer say "If Color=Red, then grab." Instead, they say "If Color=Red
AND Shape=Round (PatternA), and also Texture=Smooth, then treat this as
a type of food." Such a rule effectively classifies the item as food by using a
combination of features rather than a single specialized condition.

Scaling Up In a more scalable system, these abstractions might become lay-
ered, with rewrite rules forming a hierarchy: lower-level rewrite rules define
intermediate feature patterns, mid-level rules define categories, and top-level
rules map categories to actions. The search over rewrite rules (via local mod-
ifications tested for their impact on prediction error and reward) leads to a
self-organized taxonomy of item types.

2.8.7 Conclusion:

By allowing rewrite rules not only to specialize but also to abstract – i.e., to form
new intermediate symbolic categories representing feature combinations – the
discrete ActPC-Chem framework can effectively learn classification functions.
Initially random or too-generic rules evolve into a structured set of conditional
rewrites that classify food vs. poison items based on the learned distribution
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of features and outcomes. This process leverages the same fundamental princi-
ple of local, error-driven rewriting, but extends it to discovering combinational
patterns that yield meaningful conceptual categories.

3 Integrating Discrete And Continuous Predic-
tive Coding for Neural-Symbolic Robotics

Now we explore how this novel ActPC variant might work together with tradi-
tional continuous ActPC in cases involving a mix of cognition, perception and
action. For concreteness we consider a particular hybrid setting, extending the
virtual bug example given above: A real (robotic) bug with a camera (vision)
and a motorized grabber arm.

In the approach we consider, high-level planning and strategy reside in the
discrete rewrite-rule network, while two continuous predictive-coding neural net-
works handle:

• Visual Perception Network: Understanding the environment’s visual pat-
terns and mapping raw pixels to symbolic features.

• Arm Dynamics Network: Handling continuous joint angles, torques, and
tactile feedback, translating the discrete actions (e.g. "move arm toward
object") into precise low-level motor commands.

This hierarchical approach, where the discrete network sets plans and the
continuous networks implement them, can exploit the strengths of both discrete
and continuous predictive-coding methods.

3.1 Conceptual Framework
In the ActPC-Chem approach pursued here, the discrete network is a metagraph
G representing states and actions as patterns, with rewrite rules R that map
input patterns to output patterns. This will serve as a high-level planning and
abstraction layer for our robotic bug. It will work together with two Continuous
Predictive-Coding Networks:

1. Vision Network: A hierarchical predictive coding model (e.g., following
Ororbia’s NGC/ActPC methods) that processes camera images and re-
duces them to a symbolic representation (like "object at location X is
food").

2. Arm Dynamics Network: Another predictive coding model that receives a
desired action (like "grab item at coordinates") and handles the continuous
control signals to actuators, learning to predict and correct its own motor
output errors.

The discrete network receives processed symbolic inputs from the Vision Net-
work and issues high-level commands for the Arm Dynamics Network, bridging
perception and actuation.
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3.2 Rough Formalization
We may formalize this hybrid architecture roughly as follows.

For the discrete part,

• Distribution over rewrite rules p(ξ).

• Error measure et = DKL (qt∥pt) as before.

• Combined reward rt and gradient update using Wasserstein natural gra-
dient:

ξk+1 = ξk − hG (ξk)
−1∇ξF (p (ξk))

For the continuous part,

• For the Vision Network, let z represent neural state variables predicting
image features, and let e represent prediction errors. Neural states update
via:

z ← z + β(−γz + (E · e)⊗ ∂ϕ(z)− e)

which is analogous to Ororbia’s neural generative coding updates.

• Similarly, for the Arm Dynamics Network, continuous predictive coding
handles joint angles, forces, and tactile feedback, iteratively minimizing
motor prediction errors and refining low-level control signals.

To integrate these components,

• The discrete network outputs symbolic commands such as "Move toward
cell ( x, y )" or "Attempt to grab object."

• The Vision Network transforms camera input into a symbolic state that
the discrete network uses as Gin

t .

• The Arm Dynamics Network takes the discrete network’s chosen action
and generates low-level continuous motor commands. Prediction error in
the arm network ensures stable and precise arm movements.

3.3 Crude Pseudocode Sketch
A crude procedural sketch of code for doing initial experimentation with ap-
proach might be something like:
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Main Loop:

loop:
# Vision processing
raw_image = robot_camera_capture()
vision_state = Vision_Net_infer(raw_image) # continuous PC inference producing

symbolic representation
G_in = construct_input_subgraph(vision_state)
# Discrete inference
predicted_output = apply_rules(G_in, R)
predicted_dist = derive_distribution(predicted_output, R)

# Execute action via Arm_Net
# Suppose predicted_output -> symbolic action: (Move_to x,y; Grab)
motor_cmd = Arm_Net_compute_actions(predicted_output) # continuous PC-based

motor control
execute_motor_cmd(motor_cmd)
# Observe environment outcome
observed_dist = observe_env_distribution(robot_sensors)
e_t = KL_divergence(observed_dist, predicted_dist)
env_reward = compute_env_reward(robot_sensors) # +1 for grabbing food, -1 for

poison, etc.
r_int = -e_t
r_ep = compute_surprise(observed_dist, predicted_dist)
r_t = alpha_int * r_int + alpha_ep * r_ep + env_reward
F_value = -r_t
grad_F = compute_gradient_xi(F_value, xi, R)
L_p = construct_measure_dependent_laplacian(R, p(xi), omega_ij)
G_xi = compute_G_xi(L_p, J_xi)
delta_xi = -h * invert(G_xi) * grad_F
xi = xi + delta_xi
R = update_rules_from_xi(xi, R)

In parallel, Vision_Net and Arm_Net continuously run their own predictive
coding updates:

Vision_Net_update() # Minimizing visual prediction errors
Arm_Net_update() # Minimizing motor and tactile prediction errors

These run at each timestep or sensory update cycle.
Of course, this sort of test implementation would be much more simplistic

and less flexible than an AGI-oriented deployment of these same mechanisms
within an overall cognitive architecture such as PRIMUS.

3.4 Physical Robot Bug Example
Consider a tabletop robot with a camera for "eyes" and a small grabber arm.
On the table, we have:
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• Food Items (F): Robot should pick these up for reward.

• Neutral Items (N): Picking these yields no reward.

• Poison Items (P): Picking these yields a negative reward.

The action, perception and learning process involved in our hybrid ActPC
approach then looks something like:

Low-Level Perception (Vision_Net): . The camera image is complex and
continuous. The Vision_Net, a predictive coding neural network, transforms
this high-dimensional input into a simplified representation like:

vision_state = { (type=F, x=2, y=3), (type=P, x=5, y=1) }

The network predicts feature patterns at multiple hierarchical levels, adjust-
ing its internal states and connections to minimize prediction error.

High-Level Planning (Discrete Rules): . Given vision_state, the discrete
network matches it against rewrite rules:

r_food: if sees food at (x,y), propose action (move_toward(x,y), grab)
r_poison: if sees poison, propose (move_away)

Early on, these rules are crude. Over trials, the Wasserstein-guided updates
shift probability mass to rules that lead to successful food grabs and away from
rules that cause interaction with poison.

Low-Level Control (Arm_Net): . When the discrete rule says "move_toward(2,3),
grab," the Arm_Net translates this into continuous joint angle adjustments.
Predictive coding in Arm_Net ensures smooth, stable movements, dynamically
correcting errors if the arm overshoots or encounters unexpected resistance.

Feedback and Adaptation: . After executing actions, the robot observes
outcomes. If it successfully grabs food, it reduces error and gains reward. This
positive outcome biases the discrete distribution of rules to favor r_food -like
transformations. The Vision_Net improves its predictions of item positions,
and the Arm_Net refines motor control for more precise grabbing, all through
their respective prediction-error minimization loops.

3.5 Propagating Prediction Errors Across Discrete and
Continuous Subnetworks

To briefly recap: We have introduced a discrete ActPC framework that updates
rewrite-rule distributions using a Wasserstein natural gradient on a measure-
dependent Laplacian. We then extended the approach to a hybrid scenario:
a robot bug that uses two continuous predictive-coding networks to handle
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complex perception and motor control tasks. The discrete network focuses on
higher-level planning and strategy (which items to approach and grab), while
continuous networks manage the fine-grained details of vision and arm dynam-
ics. This layered approach leverages the strengths of both discrete, symbolic
reasoning and continuous, predictive-coding-based adaptation, potentially scal-
ing to more complex real-world tasks.

By integrating the discrete approach with Ororbia-style continuous predic-
tive coding networks, we illustrate a plausible architecture for hierarchical con-
trol. The discrete rewrite-rule planner selects strategic actions, while the contin-
uous networks handle domain-specific complexities. This toy example suggests
a pathway to scalable, hybrid solutions mixing discrete program-like policies
with biologically inspired neural predictive coding.

Within this framework, one becomes curious about the specifics of how the
use of PC (probabilistic error tracking and correction etc.) in the continuous
perceptual and action networks might work together with the use of PC in
the discrete network. The particulars will of course depend on how all this
is actually implemented, but one can tell an interesting "just so story" at the
thought-experiment level.

With this in mind, we now give a detailed, step-by-step explanation of how
error tracking and correction might flow through the three-layered system –
composed of a discrete ActPC-inspired network of rewrite rules, and two con-
tinuous predictive coding (PC) networks for perception and motor control – in
the example physical robot bug scenario.

Our detailed setup is as follows:

Vision Network (Continuous PC):

• Input: Camera images of the environment, containing food, neutral items,
and poison items.

• Output: A perceptual representation summarizing salient features (e.g.,
positions and types of items).

• Method: Predictive coding continuously adjusts internal neural states
(and possibly synaptic weights) to minimize the difference between pre-
dicted sensory features and actual sensory input.

Discrete Rewrite-Rule Network (Discrete ActPC):

• Input: Symbolic representation from the Vision Network (e.g., "food at
(x,y)", "poison at (u,v)").

• Output: High-level action plans (e.g., "move to (x,y), then grab").

• Method: Maintains a probability distribution over rewrite rules. Predic-
tion error is measured in terms of information-theoretic divergence (e.g.,
KL divergence) between predicted outcomes and observed outcomes. Re-
wards modulate the selection and evolution of rewrite rules.
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Arm Dynamics Network (Continuous PC):

• Input: A desired high-level action from the discrete network (e.g., "grab
at (x,y)").

• Output: Continuous joint commands and torque signals for the robot’s
actuators.

• Method: Predictive coding aligns predicted arm states (joint angles, tactile
feedback) with actual feedback. It continuously corrects motor outputs to
reduce error.

Given this setup, the flow of Error Propagation and Correction looks some-
thing like:

Initial Perceptual Processing (Vision Net): The camera provides raw
pixel data. The Vision Network has an internal generative model that predicts
what it should see next, given its current state and top-down predictions. This
model might say, "Given the bug’s position and known configuration of the
environment, I expect to see a food item at a certain location in the image."

Error Signal in Vision Net: The Vision Network compares predicted sen-
sory features (generated internally) with the actual image input. Any mismatch
is a visual prediction error signal. For instance, if the network predicted food
at (x = 2, y = 3) but the camera shows no item there, the network registers a
prediction error.

Correction in Vision Net: The Vision Network adjusts its internal states
(neural activations representing latent variables) and possibly its weights to
reduce this error. Over time, it forms a more accurate representation of what
is actually present in the environment.

Once stabilized, the Vision Network outputs a symbolic representation—for
example, it might confidently report: "Food item at (2, 3)." This representation
is now less errorful and more trustworthy after multiple inference cycles have
minimized internal prediction error.

High-Level Planning (Discrete Network): The discrete rewrite-rule net-
work takes the symbolic input from the Vision Net: "Food at (2, 3) " and
possibly "Poison at (5, 1).” It attempts to predict the outcome of certain action
choices. For instance:

• If the network currently prefers a rewrite rule that says: (See F at (2, 3) )
-> (Move to (2, 3); Grab), it predicts that following this rule will lead to
obtaining food and a reward.

• Error Signal in Discrete Network: The discrete network forms predictions
about the next observed state (e.g., after moving and grabbing, it ex-
pects to confirm that the grabbed item is food, yielding positive reward
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and stable future states). Once the action is taken and the environment
updates, the network observes actual outcomes. If the expected positive
outcome doesn’t occur—maybe the bug ended up at the wrong cell or
grabbed nothing-there is a symbolic-level prediction error: the observed
result differs from the predicted result distribution.

This error is measured as an information-theoretic divergence between what
the rules predicted and what was observed. Additionally, if no reward is obtained
when expected, or if a penalty is received, the discrepancy is also noted.

Correction in Discrete Network: The network uses the Wasserstein nat-
ural gradient and local rule rewrites to adjust the distribution over rewrite rules.
If a rule led to high error or low reward, the probability mass shifts away from
that rule’s configuration. If another rule (e.g., a slight modification of the origi-
nal one) would better align predictions with observed outcomes (and yield food
reward), the distribution moves towards it.

Over many trials, the discrete network "discovers" rewrite rules that more
reliably yield correct and rewarding outcomes-effectively minimizing higher-level
symbolic and reward-related prediction errors.

Motor Control (Arm Dynamics Net): Once the discrete network selects
a plan—say "move the arm toward (2, 3) and grab"-the Arm Dynamics Network
receives this as a target. The arm network predicts the necessary joint angles,
torques, and resulting sensory feedback (proprioception, tactile sensors) from
executing this action.

• Error Signal in Arm Net: The arm network has its own generative model
predicting what the arm’s sensors (joint encoders, tactile sensors in the
gripper) should report if it correctly executes the move-grab action. If the
arm moves and encounters unexpected resistance, overshoots the position,
or fails to detect the item in the gripper, the predicted sensor values do
not match the actual sensor readings. This mismatch is the arm-level
prediction error.

• Correction in Arm Net: The Arm Dynamics Network continuously adjusts
the motor commands. If it predicted that a certain torque would position
the arm at (2, 3) but sees that the arm ended up at (2.5, 3), it updates
its internal states and control signals to correct the position. This may
happen in real-time at a high control frequency, rapidly minimizing low-
level prediction errors until the arm stabilizes at the desired coordinates
and successfully grabs the item.

Interaction Among the Three Layers:

• Bottom-Up Error Transmission: From the environment upward:
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– The Arm Net sees a difference between intended and actual arm posi-
tions and corrects it, reducing the local motor error. This correction
ensures that the discrete action chosen (e.g., "grab at (2, 3) ") is
physically realized.

– If the Arm Net still fails to achieve the desired action (perhaps the
item was at (2, 3) visually, but actually it’s slightly off), the discrete
network eventually sees that its predicted outcome (food grabbed)
did not materialize. This sends an error signal up to the discrete
network, causing it to reconsider which rule it should use next time.

– If the Vision Net’s representation was off to begin with (e.g., it mis-
labeled a poison item as food), the discrete network will select ac-
tions that don’t yield expected reward. Over time, this leads the
discrete network to maintain pressure on the Vision Net to improve
its accuracy. The Vision Net will, in parallel, refine its internal rep-
resentations to reduce persistent visual prediction errors.

• Top-Down Error Modulation: From the discrete planner downward:

– When the discrete network’s chosen action fails, it adjusts its rewrite
rules and distribution over them. This can mean that next time, it
selects a different target location or a different grabbing strategy.

– Different actions chosen by the discrete network give the Arm Net dif-
ferent sensory predictions to fulfill, prompting the Arm Net to learn
a richer internal model of its capabilities. Similarly, the Vision Net
is influenced by the world changes induced by the discrete network’s
action choices.

• Equilibrium of Error Minimization: Over repeated interactions:

– The Vision Network converges to stable, low-error representations of
the environment’s layout.

– The Discrete Network converges to a set of rewrite rules that reliably
produce sequences of actions leading to food and avoiding poison.

– The Arm Dynamics Network learns a smooth, stable mapping from
high-level intended actions to low-level motor controls, minimizing
proprioceptive and tactile prediction errors.

Thus, all three networks engage in a synergistic cycle of error correction:

• The Vision Net reduces sensory prediction error, providing clearer sym-
bolic input.

• The Discrete Net reduces symbolic and reward-related prediction error by
adjusting its rule set.

• The Arm Net reduces motor execution errors to ensure actions match
intended plans.
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Over time, this layered error-correction feedback loop leads to coherent,
adaptive behavior: the robot bug learns to perceive objects accurately, choose
beneficial actions strategically, and execute those actions precisely.

4 Integrating Symbolic AI Into ActPC-Based Al-
gorithmic Chemistry

One advantage that accrues from doing ActPC in a discrete setting, and in
particular in a rewrite-rule context, is that this makes it very natural to integrate
ActPC with various symbolic-AI mechanisms for reasoning, learning, concept
creation and so forth.

This is a large and diverse topic, and we will explore it here only to a limited
extent, looking at the examples of the AIRIS causal rule learning algorithm and
the PLN uncertain logical inference approach. From these examples it will be
reasonably clear how to integrate other PRIMUS symbolic AI algorithms like
concept blending and evolutionary program learning, according to a broadly
similar pattern.

4.1 Integrating AIRIS
AIRIS (Autonomous Intelligent Reinforcement Inferred Symbolism) [CH24] pro-
vides a novel algorithm for building causal reasoning in autonomous agents. It
learns causal rules from the environment dynamically during interaction, en-
abling flexible, transparent, and data-efficient learning compared to traditional
reinforcement learning (RL).

Key features of AIRIS include:

• Rule-Based Learning: Learns expert system-like rules dynamically from
environment observations.

• Causal Reasoning: Builds a graph of causal states (State Graph) for plan-
ning and action.

• Adaptability: Can handle changing objectives or unseen situations by
updating its learned rules.

• Transparency: Provides a scrutable world model for debugging and user
control.

We will give here a speculative but moderately detailed conceptual and al-
gorithmic description of how to form an AIRIS-ActPC hybrid using the discrete
rewrite-rule framework. This approach integrates AIRIS’s causal rule inference
and state graph construction with ActPC-Chem’s predictive-coding-inspired up-
dates and optimal transport-based gradient steps. Both symbolic (AIRIS-like)
and predictive coding (ActPC-like) aspects operate through rewrite rules in the
same metagraph, allowing for a unified representation and learning mechanism.
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4.1.1 Conceptual Integration

Unified Metagraph Representation: . We maintain a single metagraph
G whose nodes represent states or concepts and whose edges represent rewrite
rules. Each rewrite rule transforms an input pattern into an output pattern. In
this hybrid system:

AIRIS-Style Rules (Causal/Symbolic): These rules capture causal rela-
tions: "If conditions {C} hold, then after action a, result S." They represent
learned symbolic knowledge like "If the agent is at (x,y) and takes action ’move
north’, it ends up at ( x, y + 1 ) with certain confidence."

ActPC-Style Rules (Predictive/Distributions): These rules model pre-
dictions and uncertainties. Rather than stating a single deterministic outcome,
they define a probability distribution over possible next states. They rely on
minimizing prediction error, balancing epistemic and instrumental signals, and
can adapt their structure and probabilities using the optimal transport-based
Wasserstein gradients.

In practice, each rewrite rule in the metagraph may have a structure like,
say

ri : (Input Pattern; Conditions; Action) Probabilities−−−−−−−−−→ (Output Pattern)
Some rules (learned from AIRIS-like logic) might be more deterministic and

symbolic, while others (ActPC-like) might express distributions over multiple
possible outcomes. Over time, all rules evolve to better represent both the
causal structure (AIRIS) and the predictive aspects (ActPC).

Single Space for Both Symbolic and Predictive Layers: . Instead of
having separate symbolic and neural modules, here everything is encoded as
rewrite rules and patterns. The distinction between AIRIS and ActPC is con-
ceptual:

• AIRIS-like Functionality: Introduce new rules or adjust existing rules
when a discrepancy between expected and observed outcomes is discov-
ered. These rules become more causal and explain sudden changes or new
conditions.

• ActPC-like Functionality: Continually adjust probabilities and conditions
of rules to reduce prediction error and incorporate optimal transport ge-
ometry for smooth transitions in rule space.

but at the implementation level, there may not always be a strict distinction
between the two components.

Optimal Transport on Rule Space: . The discrete ActPC approach in-
troduced a measure-dependent Laplacian and Wasserstein natural gradients to
find smoother rule updates. Now, when integrating AIRIS:

48



• The set of rewrite rules and their probabilities p(ξ) form a discrete prob-
ability distribution over "how the agent believes the environment works."

• AIRIS’s new rule introductions and confidence adjustments (symbolic rea-
soning) modify the structure and conditions of these rules.

• The ActPC Wasserstein step adjusts the distribution over these rules,
ensuring that each update respects the underlying cost structure ωij in
the rule space (where ωij measures the ’distance’ or ’difference’ between
rules ri and rj ).

4.1.2 Learning Process

Given the above setup, the learning process of the combined ActPC-Chem /
AIRIS system would look something like

Initial State:

• Metagraph G with a small set of generic rewrite rules, some representing
trivial predictions (e.g., "move forward leads to forward motion") and
others representing no-op or random actions.

• Parameter vector ξ encodes a probability distribution over these rules.

Observation and Action: At each step:

• The agent’s current state subgraph Gin
t is known.

• The rewrite rules Rt are applied to predict next states and choose actions.
AIRIS-like reasoning tries to find a path (a sequence of rewrites) to a
goal state. ActPC-like prediction tries to match predicted and observed
distributions.

Prediction vs. Observation: After executing an action and observing the
next state:

• Compare predicted distribution pt(m) of outcomes with actual outcome
qt(m).

• If a discrepancy arises, the system:

– Uses AIRIS logic to create or update a rule to explain the unexpected
change. For example, if the agent thought "move north" would result
in state A but got state B, a new rule that refines conditions or
outcomes is introduced.

– Uses ActPC logic to adjust the probabilities and parameters of rules,
minimizing KL divergence (or other information-theoretic errors) and
integrating rewards.
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Causal Inference (AIRIS) Within the Metagraph: AIRIS normally forms
a state graph and learns rules IF {C} THEN S. Here, these rules are just special
rewrite rules in the metagraph:

rAIRIS : IF{C}ANDACTION = a =⇒ NEXT−STATE = S

I.e.,

• When a discrepancy is found, a new rule is introduced:

• Conditions {C} might be detected by analyzing which aspects of the pre-
vious state differ from the observed next state.

• Statements S encode the newly discovered result of applying action a
under conditions {C}.

• Confidence in these rules is updated by counting how often conditions
match and outcomes come true.

Predictive Coding (ActPC) on the Same Rules: Each rewrite rule can
have associated probability or confidence weights. Prediction error looks l ike

et = DKL (qt∥pt)

and rewards combine epistemic (exploration) and instrumental (goal achieve-
ment):

rt = αint (−et) + αep( surprise measure ) + environmental reward

Parameter updates for the distribution over rules look like:

ξk+1 = ξk − hG (ξk)
−1∇ξF (p (ξk))

where G(ξ) is computed from the measure-dependent Laplacian on the rule
graph and F = −rt.

This latter step moves probability mass toward rules that better explain
observations and lead to rewards, while respecting the geometry defined by ωij .

Crude pseudocode for initial standalone experimentation with this sort of
process might look like

Pseudocode

Initialize metagraph G with an initial set of rewrite rules R
Initialize parameters xi for the distribution over these rules
loop:
current_state = observe_environment()
# Predict next state and choose action via rewrite rules:
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predicted_outcomes = apply_rewrite_rules(current_state, R, xi)
# Select action from predicted distribution (ActPC) + cause-effect planning (AIRIS)
action = select_action(predicted_outcomes)
# Execute action in environment
next_state = environment_step(action)
# Observe outcome distributions q_t(m)
observed_distribution = derive_distribution(next_state)
predicted_distribution = derive_distribution_from_rules(current_state, action, R, xi)
# Compute error and reward
e_t = KL_divergence(observed_distribution, predicted_distribution)
env_reward = compute_environmental_reward(next_state)
r_ep = compute_surprise(observed_distribution, predicted_distribution)
r_t = alpha_int * (-e_t) + alpha_ep * r_ep + env_reward
F_value = -r_t
# AIRIS-like rule updates: If discrepancy is found, create or refine a rule
if discrepancy_detected(predicted_distribution, observed_distribution):

new_rule = create_or_refine_rule(current_state, action, next_state)
R = add_rule_to_metagraph(R, new_rule)

# Compute gradient wrt xi for ActPC updates
grad_F = compute_gradient_xi(F_value, xi, R)
# Construct measure-dependent Laplacian L(p(xi)) from rule graph
L_p = construct_measure_dependent_laplacian(R, p(xi), omega_ij)
G_xi = compute_G_xi(L_p, J_xi)
# Update xi via Wasserstein natural gradient
xi = xi - h * invert(G_xi) * grad_F
# Update rewrite rules probabilities and conditions based on updated xi
R = update_rule_distribution(R, xi)
# Over time, AIRIS-like rules become more reliable and ActPC-like predictive
# distributions become more accurate and stable.

4.1.3 How Abstraction Emerges:

As AIRIS-like logic introduces rules to explain unexpected transitions, these
rules can incorporate more complex conditions. For instance, they can join
multiple features into a condition that reliably predicts an outcome. This is
how the symbolic, causal layer emerges. That is,

• The ActPC component ensures that even with new rules added, the overall
distribution over rules converges to a set that minimizes prediction error
and achieves goals. If certain introduced rules do not improve predictive
accuracy or reward achievement, their probability is reduced and they may
eventually be pruned or replaced by betterfitting rules.

• Through iterative rewriting, the system can build hierarchical abstrac-
tions. Lower-level rules might define intermediate feature patterns; higher-
level rules use these patterns as conditions for actions leading to specific
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outcomes, merging the symbolic clarity of AIRIS with the adaptive pre-
dictive tuning of ActPC.

4.1.4 Recap of ActPC-Chem + AIRIS

Summing up, in this hybrid AIRIS-ActPC-Chem approach:

• Both symbolic causal reasoning and predictive modeling occur through
the same rewrite-rule mechanism in a single metagraph.

• AIRIS-like operations handle causal discovery and rule creation when dis-
crepancies appear.

• ActPC-like gradient-free optimization and optimal transport geometry
guide probability shifts among rules, ensuring stable convergence and bal-
anced exploration-exploitation.

By unifying symbolic and predictive coding updates in one discrete rewriting
framework, this hybrid model leverages the strengths of both AIRIS (causal
reasoning, transparency) and ActPC (adaptive, gradient-free learning) to create
a powerful, interpretable, and robust learning system.

(Or that’s the theory, at any rate...)

4.2 ActPC-Chem with AIRIS: A Virtual Bug Example
To make this a little more concrete, we now give a moderately detailed hy-
pothetical example integrating AIRIS-like causal rule inference and ActPC-like
predictive coding in the discrete rewrite-rule framework, applied to the virtual
bug scenario. We’ll show how this hybrid approach can help the bug learn com-
plex, time-delayed and context-dependent distinctions between food and poison
items.

4.2.1 Scenario Setup

The Environment:

• A virtual bug moves in a grid world collecting items.

• Items appear with various visual/olfactory features (color, shape, smell,
etc.).

• Some items are always good food.

• Some items are poison, but their effects vary:

• Delayed Poison: Some items only cause sickness hours (or many time-
steps) after ingestion.

• Conditional Poison: Some items are beneficial if the bug keeps moving af-
ter eating them (e.g., "running digestion" turns them into a good nutrient
source), but harmful if the bug sits still after ingestion.
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The Challenge:

• The bug cannot distinguish which items are safe or dangerous by imme-
diate reward alone.

• The bug must discover causal rules that connect item features, actions
after ingestion, and temporal delays, to the eventual outcome (health im-
provement, neutral effect, or sickness).

• This requires building complex causal models-something AIRIS is good
at—while also dealing with uncertainty and continuously adapting predictions-
something ActPC excels at.

State Representation using Metagraph with Rewrite Rules: In the
most straightforward approach, we could say

• Nodes represent states or concepts: these might include the bug’s position,
the items it holds, its current health, how long since it ate a particular
item, and whether it is moving or resting.

• Edges (rewrite rules) transform an input pattern (current state + action)
into an output pattern (next state), often probabilistically.

Initially, the bug has very generic rules:

r_move: (Bug at (x,y), sees item) + Action=Eat -> (Bug holds item, same features)
r_wait: (Bug holds item, t since ingestion < threshold) + Action=Wait -> (Bug holds
item, t+1)
...
r_generic_poison:
r_generic_food:

These rules do not yet differentiate subtle feature combinations or delayed
effects.

Causal Discrepancy Detection: Suppose that

• The bug tries eating a new item with certain features: {Color=Red,
Shape=Round, Smell=Sweet}.

• Immediately after ingestion, nothing bad happens, so the bug’s current
rewrite rules predict a neutral or beneficial outcome.

• Hours later: The bug finds itself sick without any immediate causal expla-
nation from its current rules. The predicted outcome ("all good") diverges
from the observed outcome ("sickness").

When the bug detects that a previously predicted neutral state ended up
being sickness after time passes, it triggers an AIRIS-like causal inference step:
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1. Identify conditions that were present at the time of ingestion.

2. Identify new rules that can explain this delayed change:

r_new_causal: IF {ate item with (Color=Red,Shape=Round,Smell=Sweet) AND after N
steps} THEN Sickness

Incorporating Time and Behavior: If the bug observes that when it eats
this item and then keeps moving (e.g., running around), it does not get sick (per-
haps it "burns off" the toxin), AIRIS-like reasoning creates a more conditional
rule:

r_conditional: IF {ate Red-Round-Sweet item, AND after N steps, bug was mostly
active} THEN Good (Nutritious outcome)
ELSE IF {ate Red-Round-Sweet item, AND after N steps, bug was mostly inactive}
THEN Poisonous outcome

These new rules are now added to the metagraph, introducing conditional
dependencies and temporal delays. The conditions include not just item fea-
tures, but also the bug’s activity pattern and elapsed time since ingestion.

ActPC-Style Predictive Coding on the Same Rules As new causal rules
are introduced, the system still faces uncertainty. Not every Red-RoundSweet
item behaves identically, and some may have different time scales or require
different degrees of activity. The ActPC portion helps here by maintaining and
adjusting probabilities of these rules:

• Prediction Error Minimization: After introducing r_new_causal and r_conditional
rules, the system tries to predict the outcome of ingesting certain items.
If the predictions still don’t match observations (maybe some Red-Round-
Sweet items only become poison after 2 hours, others after 3 hours),
ActPC’s information-theoretic error signals kick in. The system updates
the probability distribution over rules to minimize KL divergence between
predicted and observed distributions.

• Wasserstein Natural Gradient Updates: As multiple candidate rules com-
pete to explain delayed poison effects, the ActPC framework uses the
measure-dependent Laplacian and optimal transport metric to shift prob-
ability mass smoothly:

• If r_conditional explaining "active running prevents sickness" consistently
aligns with outcomes, its probability increases.

• If a simpler rule that doesn’t consider activity patterns fails to predict
outcomes well, probability mass gradually shifts away from it.

The combination ensures that, over time, the system does not just add more
and more rules -it also filters, refines, and balances them according to predictive
accuracy and reward signals.
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Temporal and Conditional Complexity: Delayed Effects: When poison
takes effect hours later, a purely reactive approach (like immediate reinforcement
signals) would struggle. The hybrid AIRIS-ActPC system can then use AIRIS-
like inference to introduce temporal conditions into rules. For instance:

r_delayed_poison: IF {ate item with pattern A, and t > T_threshold} THEN
become sick

The use ActPC to manage uncertainty here is clear: eg. perhaps it’s not al-
ways t > T_threshold, maybe it’s t > T_threshold+1. Over multiple episodes,
ActPC tries variants of these rules (rewrite steps that adjust the temporal
threshold) and keeps those that minimize prediction error and maximize re-
ward.

Contextual Conditions: The "running vs. sitting still" condition requires
rules that incorporate the bug’s own behavior patterns. Initially, the system
might have a rule:

r_guess: IF {ate pattern A item} THEN after T steps become sick

Observing that when the bug moves continuously after ingestion, sickness
doesn’t occur, triggers AIRIS to refine this rule into:

r_refined: IF {ate pattern A item, AND inactivity_level > X} THEN after T steps
become sick
ELSE IF {ate pattern A item, AND inactivity_level <= X} THEN no sickness

ActPC ensures that if this refined rule reduces long-term prediction error
and leads to better policies (e.g., the bug learns to keep moving after eating
ambiguous items to avoid sickness), it becomes more probable and stable in the
system.

Iterative Refinement

1. Initial Trials: The bug eats unknown items, half the time it becomes sick
after a delay, half the time not. The system is initially confused.

2. AIRIS Rules Emerge: Observing patterns, AIRIS introduces rules with
conditions on item features, time delays, and the bug’s activity. For ex-
ample, a rule emerges like:

r_complex: IF {Item matches features: Red-Round-Sweet, Ate at time t0}
AND {At time t0+N, bug’s motion pattern = "mostly still"}
THEN Sickness at t0+N

Another variant:
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r_alternative: IF {Item matches features: Red-Round-Sweet, Ate at time t0}
AND {At time t0+N, bug’s motion pattern = "mostly moving"}
THEN Good Nutrition at t0+N

ActPC Probability Adjustment could look like:

• Initially, maybe multiple candidate rules are proposed, differing in the
exact threshold N or the required inactivity level. ActPC tries each rule
out (due to exploratory updates and stochastic rule application). Over
many episodes:

• Afterwards,

– Rules that fail to predict outcomes accurately are assigned lower
probability.

– Rules that consistently match observed transitions and lead to re-
wards (the bug learns to use them to avoid sickness and gain nutri-
tion) are assigned higher probability.

The measure-dependent Laplacian ensures that modifications to rules are
not random jumps, but structured steps respecting rule-space geometry defined
by similarity metrics ωij .

End Result: . Eventually, the system stabilizes on a set of rewrite rules that
capture the causal complexity:

• Certain feature combinations + inactivity lead to delayed poisoning.

• The same items under different activity conditions yield nutrition.

The bug’s learned policy, guided by these rules, might be: "If I pick up a
Red-RoundSweet item, I must keep moving for the next hour to avoid sickness.
If I stop moving, I get sick." This is exactly the kind of subtle causal pattern
that AIRIS’s rule inference captures, while ActPC refines and stabilizes the
distribution of rules to ensure accurate predictions and good performance.

4.2.2 Conclusion

In this hybrid AIRIS-ActPC discrete rewrite-rule context, the bug learns com-
plex causal relationships involving delayed and conditional poisoning:

• AIRIS contributes by introducing and refining rules that incorporate tem-
poral delays and conditional logic (e.g., activity-dependent digestion).

• ActPC ensures these rules are integrated into a predictive coding frame-
work that continuously reduces error and balances exploration (epistemic
reward) with goal achievement (instrumental reward).
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• Together, they enable the bug to discover that certain items are "con-
ditionally good" or "delayed poison," adapting its long-term behavior to
these complex causal patterns.

This synergy allows for emergent causal inference and stable, accurate pre-
dictive modeling in a challenging environment where cause-and-effect relation-
ships span both time and contextual conditions.

4.3 Integrating PLN Inference
As an additional hypothetical exploration regarding integration of advanced
symbolic cognitive methods into the ActPC-Chem framework, we now flesh out
a moderately detailed scenario illustrating how a Probabilistic Logic Networks
(PLN) inference engine [GIGH08] could be integrated into the hybrid AIRIS-
ActPC discrete rewrite-rule framework.

Continuing with the "virtual bug" example for simplicity and concreteness,
we focus on how PLN’s uncertain logical inference capabilities can propose prob-
abilistic abstractions and hypotheses, which then get tested and refined by the
ActPC predictive-coding error signals and integrated into AIRIS’s causal rule
graph. The synergy of these three components (PLN, AIRIS, ActPC) yields a
system capable of not just reacting and adapting, but also logically generalizing
from past experience to guide future exploration.

Summing up we here consider a system for virtual bug control involving
three key components;

• AIRIS (Causal Rule Inference): AIRIS focuses on discovering and refin-
ing causal relationships in the environment. It detects when observed
outcomes diverge from expectations and introduces new rewrite rules or
conditions that can explain these discrepancies causally.

• ActPC (Predictive Coding in Discrete Setting): ActPC uses predictive
coding principles to assign probabilities to rewrite rules, minimizing pre-
diction error and balancing exploration and exploitation. It tracks how
well the current set of probabilistic rules matches observed outcomes, ad-
justing the probability distribution over rules using optimal transport-
based gradient steps.

• PLN (Probabilistic Logic Networks): PLN can reason inductively, abduc-
tively, and deductively over uncertain knowledge, generating probabilistic
inferences and abstractions. It can take the raw experiences and previ-
ously learned rules and guess new, higher-level rules: for instance, "If
items have a certain pattern of features, they are probably beneficial if
digested while moving."

The envisioned combined workflow then looks roughly like:

• Experience & Observation: The bug interacts with its environment, en-
countering items with various features, ingesting them, and experiencing
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delayed or conditional effects (some only poison if the bug stops moving
afterward, etc.).

• Local Causal Updates (AIRIS): When unexpected outcomes occur, AIRIS
updates or adds rewrite rules with more complex conditions.

• Global Probabilistic Refinement (ActPC): ActPC monitors the global con-
sistency of predictions and outcomes, adjusting the probabilities assigned
to each rewrite rule to minimize predictive error.

• Abstraction & Hypothesis Generation (PLN): Using the knowledge the
bug has acquired, PLN creates higher-level probabilistic rules. For exam-
ple, from instances of "red-round-sweet" items that become nutritious if
running and poisonous if still, PLN might generalize that "Any item with
a particular set of chemical markers (detected indirectly) behaves simi-
larly." PLN can also propose rules about unseen combinations of features,
guessing their likely outcomes based on analogies or inductive reasoning.

4.3.1 Integration of PLN with AIRIS and ActPC

So let’s run through this potential integration in more detail.
Consider e.g. PLN as a Hypothesis Generator: Suppose the bug has encoun-

tered several items that share only partial feature overlap with previously known
food or poison patterns. The bug’s current AIRIS/ActPC rule set explains some
patterns but leaves others uncertain, leading to persistent prediction errors.

PLN steps in:

• Using logical inference (induction), PLN notices that items with high sugar
content are generally beneficial if the bug keeps moving after ingestion.

• It also notices that items containing a certain organic compound (inferred
from partial features) often become poisonous if the bug remains still.

PLN forms a new probabilistic hypothesis:

If (item has FeatureSet X) and (after ingestion, activity pattern = still), then
Probability(Outcome=Poison) = p1

If (item has FeatureSet X) and (after ingestion, activity pattern = moving),
then Probability(Outcome=Beneficial) = p2

This hypothesis is expressed as a set of conditional rewrite rules with asso-
ciated probabilities.

Inserting PLN’s Abstractions into the Metagraph: The metagraph that
stores rewrite rules now receives new candidate rules from PLN. For example:

r_pln_hyp: IF {Item Features = X} AND {t steps after ingestion} THEN:
- With probability p1: leads to Poison if still
- With probability p2: leads to Benefit if moving
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These rules might not be immediately reliable. They are hypotheses. AIRIS
previously discovered conditions for specific known items, while PLN provides
a more abstract, general rule that might explain novel items.

Testing PLN-Derived Rules with ActPC: ActPC monitors the prediction
errors. If the bug tries ingesting a new item that fits FeatureSet X :

• The system uses both previously learned AIRIS rules (more specific) and
the new PLN-proposed rule (more general and abstract).

• The predicted outcome is now a mixture of probabilities from different
rules (some specific rules learned earlier, and the new general rule from
PLN).

After the bug acts (e.g., it stays still after ingesting the item), the actual
outcome is observed. Suppose the outcome matches the PLN’s predicted pat-
tern (the bug gets mildly sick after 1 hour). This reduces prediction error and
validates the PLN rule’s usefulness.

ActPC then shifts probability mass toward this new PLN-derived rule, rein-
forcing it. If instead the rule had failed to predict the correct outcome, ActPC’s
error signals would lower its probability and prompt PLN or AIRIS to consider
alternative inferences.

Refining Causal Structure with AIRIS If a PLN-generated rule is par-
tially correct but not entirely, AIRIS can refine it by adding more nuanced
conditions/

E.g. maybe the PLN said FeatureSet X leads to poison if still, benefit
if moving. The bug finds that’s only true if temperature is below a certain
threshold. AIRIS introduces a condition for temperature:

r_refined: IF {Item Features = X, Temperature < T, inactivity} THEN Poison
IF {Item Features = X, Temperature >= T, inactivity} THEN Neutral

With each refinement, the system merges PLN’s abstract hypotheses with
AIRIS’s concrete causal inference to yield more accurate and context-rich rewrite
rules.

Continuous Feedback Loop:

• PLN: Generates hypotheses about unseen events or novel feature combi-
nations using logical inference and generalization.

• AIRIS: Detects discrepancies and refines rules, inserting context conditions
that handle discovered exceptions.
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• ActPC: Provides the "ground truth" check in terms of predictive accu-
racy and reward acquisition, using error signals to modulate the proba-
bility distribution over the entire rule set. This ensures that both new
(PLN-proposed) and old (AIRISdiscovered) rules must stand the test of
predictive accuracy and environmental reward.

4.3.2 One More Virtual Bug Thought Experiment

Consider next the following slightly more complex scenario:

• The bug encounters a new class of items with a faint odor it never experi-
enced before: FeatureSet X = {Odor=FaintSweet, Color=Purple, Shape=Round}.

• No existing AIRIS rule matches this item exactly; the bug tries ingestion.

• Without PLN, the system would rely purely on trial-and-error combined
with local causal refinement. It might take many trials to guess that
these Purple-Round-FaintSweet items behave like Red-Round-Sweet items
if digested in a warm environment and while running.

With PLN, on the other hand, we can have a dynamic like:

• PLN sees a pattern: previously, any item with "Sweet-like" odor and
"Round" shape turned out beneficial if the bug stayed active post-ingestion.
PLN generalizes: "Likely this new faint-sweet-odor item also benefits from
post-ingestion movement."

• PLN proposes a rule:

r_pln_generalization: IF {Odor ~ Sweet, Shape = Round} AND {Maintain movement
post-ingestion} THEN Probably beneficial

• The bug tries it out. The ActPC module notes a lowered prediction error
if the bug moves after ingesting the new item, confirming PLN’s guess.

• If the item’s effect turns out to depend on temperature as well, AIRIS
notices discrepancies when the bug tries the same strategy in cooler con-
ditions. AIRIS refines the rule to:

r_pln_airis_refined: IF {Odor ~ Sweet, Shape=Round, Temp < T, Movement post-
ingestion}

THEN High chance of benefit
ELSE if Movement but Temp >= T

THEN Neutral benefit (not as good)

• ActPC integrates this refined rule into the probability distribution, main-
taining or increasing its probability as long as prediction error stays low.

Over multiple episodes, PLN’s broad inductive leaps speed up the discovery
of good strategies, while AIRIS hones these strategies into context-specific causal
rules, and ActPC ensures that only rules that actually lead to consistent and
low-error predictions remain prominent.
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4.3.3 Conclusion

Overall, it seems that by embedding PLN’s uncertain logical inference into the
AIRIS-ActPC framework, what we may achieve is:

• PLN contributes advanced generalization and probabilistic logical infer-
ence capabilities, proposing new rules about unseen events or novel com-
binations of features.

• AIRIS ensures these hypothesized rules are tested and, if necessary, refined
into more context-sensitive causal patterns.

• ActPC provides a continuous quality control loop, using prediction error
and reward to regulate which rules are taken seriously and which are
downgraded.

In this integrated architecture, for instance, a virtual bug doesn’t just react
and learn incrementally. It also forms probabilistic abstractions and guesses
about new items’ behaviors, tests these guesses against reality, and continuously
refines them. The synergy allows a richer, more adaptive, and more rapidly
converging learning process than any of the components could achieve alone.

This sort of system could also serve as a foundation onto which other PRIMUS
cognitive methods could be integrated, e.g. MOSES procedure learning, concept
blending, and so forth. The general advantages conferred by these techniques
would be manifested in these simple "bug world" scenarios in fairly concrete
ways, which however we will not take time to elaborate here, having chosen
AIRIS and PLN as the two symbolic PRIMUS algorithms to discuss in moder-
ate detail right now.

5 Toward an ActPC and Algorithmic Chemistry
Based Transformer-Like Prediction Network

As a complement to the potential utilization of ActPC-Chem for experiential
learning experiments with simple agents in virtual or robotic settings, it may
also be interesting to experiment with the methodology for larger-scale "narrow
AI" ish applications, such as biomedical or financial data analytics, or emulating
some of the functions of current LLMs in a fashion more amenable to improve-
ments overcoming some of these system’s well-known short-comings in terms of
fact-groundedness, creativity and sustained systematic reasoning.

We will sketch here a high-level conceptual architecture outlining how one
might construct a transformer-like system – akin to modern LLMs in high level
structure and function, but intended for improved AI capability – using the com-
bination of methods described above: discrete ActPC for core learning rather
than backprop, AIRIS for causal reasoning to reduce hallucinations, PLN for
probabilistic logical abstractions, and integrated continuous predictive-coding
(PC) neural networks for multimodal perception. The goal is to convey the
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rough structure and information flow rather than the implementation details –
this is definitely a pointer in a promising-looking research direction rather than
a highly particular architecture one would expect to code up and have working
right out of the box!

Traditional transformers (e.g., the ChatGPT models and their main commer-
cial competitors and open source analogues) rely on large-scale backpropagation
through a network of attention and feedforward layers to model sequences. In
the approach roughly sketched here,

• we replace backprop with a discrete ActPC (Active Predictive Coding)
mechanism that updates a probabilistic distribution over rewrite rules
that govern token transformations

• AIRIS-like causal reasoning and PLN-driven probabilistic logic introduce
causal and conceptual coherence

• Continuous PC neural networks handle sensory (e.g., image, sound) em-
beddings, integrating multimodal input seamlessly.

5.1 Architectural Components
5.1.1 Discrete ActPC Core (Instead of Standard Transformer Lay-

ers):

Rewrite Rules as a Basis of Computation: Instead of linear projections
and backprop-updated weights, we store a set of probabilistic rewrite rules that
transform sequences of tokens/states into predicted next tokens/states. These
rules form a metagraph playing the role of the neural layers in a standard
transformer.

Attention-Like Mechanism via Rule Selection and Matching: Instead
of scaled dot-product attention, the system uses a "rule matching and applica-
tion" process. Given a current sequence state, the system selects from a set
of candidate rewrite rules-guided by probabilities maintained and updated by
ActPC-to determine which rules best predict the next element of the sequence.

Prediction Error Minimization (ActPC): Each step, the model predicts
the next token or next set of states. When the actual next input is observed,
the difference between prediction and reality drives error signals that update the
probability distribution over rules. Optimal transport geometry ensures stable,
gradient-free adaptation of the rule distribution.

5.1.2 AIRIS-Like Causal Reasoning Integration:

Causal Graph & Conditions in Rewrite Rules: AIRIS principles in-
troduce conditional rewrite rules that capture causal relations between tokens
or states. For example, certain linguistic constructs might cause certain future
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patterns. Over time, the system refines these causal rules to reduce nonsensical
correlations (hallucinations).

Context and Structural Coherence: If the sequence represents text,
AIRIS-like reasoning can detect when certain narrative or logical structures are
violated and attempt to introduce new conditional rules ensuring that future
predictions respect previously established causal or narrative constraints.

5.1.3 PLN (Probabilistic Logic Networks) for Abstraction & Induc-
tion:

Abstract Probabilistic Generalizations: PLN provides a layer of reason-
ing that can propose new rewrite rules at a higher conceptual level. For instance,
if the model frequently encounters a pattern of reasoning steps, PLN might in-
troduce a new abstract rule capturing this pattern and assign it a probability.

Reducing Hallucinations and Improving Consistency: PLN can help
recognize that certain transitions are logically inconsistent, even if statistically
plausible. It can propose constraints that the ActPC core tries to satisfy by
adjusting probabilities of conflicting rewrite rules.

Inductive Leap for Unseen Patterns: When faced with novel sequences,
PLN can induce rules that generalize from observed patterns, allowing the model
to guess what should come next even without direct training examples, relying
on logical and conceptual similarities to known cases.

5.1.4 Continuous PC Neural Networks for Multimodal Input:

Multimodal Embeddings via Continuous PC: Just as standard GPT-
like models use learned embeddings for tokens, here we can integrate continuous
predictive-coding neural sub-networks for images, audio, or robot movement
states. Each modality’s input passes through a PC network that minimizes
sensory prediction error and outputs a stable latent representation (symbolic or
feature-based).

The process then looks like:

• Translation into Rewrite Rule Space: The continuous PC networks out-
put feature codes that can be turned into "pseudo-tokens" or symbolic
patterns the discrete ActPC framework can handle. For example, an im-
age frame leads to a set of visual features that the rewrite rules treat like
tokens.

• Bi-Directional Influence: The discrete ActPC core and PLN/AIRIS mod-
ules can feed predictions back to the continuous PC networks, guiding
them to refine their latent representations to better match the expected
context. This is akin to top-down predictive coding in hierarchical gener-
ative models.
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5.2 Information Flow (High-Level):
The flow of information within this proposed architecture then looks like:

5.2.1 Input Processing:

• Multimodal input (text tokens, image frames, audio signals, robot sensor
states) is received.

• Continuous PC networks process images/audio/motor states, outputting
stable feature sets. Text tokens enter directly as symbolic states.

5.2.2 Rewrite Rule Prediction (ActPC Core):

• The current sequence state (including the just-processed multimodal fea-
tures) is matched against existing rewrite rules.

• Multiple candidate rules predict possible next tokens (in a textual sce-
nario) or next sensory states.

• Probability distribution over these rules is shaped by past successes/failures
and updated via prediction error minimization.

5.2.3 Causal & Logical Refinement (AIRIS + PLN):

• If the model’s predictions start to diverge from sensible causal relationships
(e.g., narrative consistency or logical coherence), AIRIS proposes new or
refined rules that explicitly encode these causal constraints.

• PLN simultaneously attempts to infer more abstract patterns. For ex-
ample, if certain narrative progressions or reasoning steps are repeatedly
rewarded (low error), PLN generalizes a higher-level rule that can skip in-
termediate steps and more directly predict logically consistent outcomes.

5.2.4 Error Feedback Loop:

• Once the environment or dataset provides the actual next token (or the
bug’s next sensory reading), the difference from the predicted distribution
feeds back into the system.

• ActPC uses this error to shift probability mass among the rewrite rules.

• AIRIS checks if the newly introduced causal conditions reduce unexplained
discrepancies.

• PLN can further refine abstractions or propose alternative logical con-
straints if errors persist.
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5.2.5 Iterative Refinement and Convergence:

• Over many sequences, just like a GPT refines its weights via backprop, this
system refines its rewrite rules and their probabilities via ActPC updates.

• AIRIS continuously shapes the causal graph underlying these rewrite rules,
preventing persistent logical inconsistencies.

• PLN gradually builds up a library of abstract probabilistic rules that can
handle novel contexts smoothly.

5.3 Parallels to Transformer Components
The key aspects of standard transformer neural net architectures may be re-
flected within this approach as follows:

• Layers and Depth: We can stack multiple "layers" of rewrite rules, where
higher layers handle more abstract patterns (thanks to PLN and AIRIS)
and lower layers handle more direct pattern completions. Each layer re-
fines predictions from the previous, similar to a transformer’s stack.

• Attention Mechanism: Instead of computing attention scores via dot prod-
ucts, "attention" emerges from how rewrite rules match patterns in the
current input. Probabilistic selection of rules that are contextually appro-
priate functions similarly to attention selecting which parts of the input
to focus on.

• Feedforward Sublayers: The "feedforward" transformations could be sets
of rewrite rules that transform intermediate representations into predicted
next tokens, again chosen probabilistically and refined by ActPC rather
than by learned dense layers.

Overall, then, one sees how a transformer-like generative model could be
built without backprop-based training, relying instead on a synergy of discrete
ActPC rule selection, AIRIS causal refinement, PLN probabilistic abstraction,
and continuous PC modules for multimodal input. The result would be a system
that, like GPT, can handle sequences and produce coherent outputs, but now
grounded in a framework that actively minimizes prediction error, leverages
causal reasoning to reduce hallucinations, and uses probabilistic logic to build
deeper, more generalizable abstractions.

5.4 Integrating Additional Memory and Reasoning Com-
ponents

If one is going to take the trouble to go this far and implement something
transformer-like in an ActPC-Chem based framework, then one might as well
go a bit further and upgrade the transformer-like architecture to include addi-
tional memory components that will allow it to serve as a more fully functional

65



component of an integrated cognitive system (e.g perhaps a PRIMUS system
with a vaguely LLM-like network as a subcomponent).

We elaborate here how an ActPC-Chem based transformer-like network, pur-
suing a "predict the next token" language modeling goal, could effectively incor-
porate explicit roles for long-term memory (LTM) and working memory (WM).
In this approach suggested here, rewrite rules, adapted over time, shuttle infor-
mation between these memory stores and shape the model’s token predictions.

Extending the architecture from the prior section, we propose to replace
standard transformer layers (with attention and feedforward sub-layers trained
via backprop) with a network of rewrite rules whose probabilities and condi-
tions are continuously updated by ActPC (discrete predictive coding). AIRIS
introduces and refines causal rules ensuring logical and narrative coherence,
while PLN creates probabilistic abstractions that generalize beyond observed
patterns. Here, however, we additionally propose to structure the system to
have explicit long-term memory and working memory stores, and rewrite rules
that move content between these memory stores, influencing the context used
for next-token prediction.

5.4.1 Memory Structures and Data Flow

Long-Term Memory (LTM): The LTM component, as we envision it in a
minimal "memory enhanced LLM like ActPC-Chem++" architecture,

• Stores a large pool of rewrite rules (some highly abstract, others very
specific), learned templates, and generalized patterns inferred over the
course of training.

• Contains both AIRIS-derived causal rules and PLN-derived probabilistic
abstractions that represent stable knowledge about language patterns and
logical/narrative structures.

Working Memory (WM): Complementarily, in this sort of architecture the
WM component

• Holds a dynamically maintained subset of tokens, concepts, and inter-
mediate inferences relevant to the current context (like the transformer’s
contextual embedding for the last N tokens, but now stored as a pattern
of rewrite-applicable structures).

• Rewrite rules operating on WM determine which parts of the recently
processed text or inferred concepts remain salient, which are combined,
abstracted, or discarded.

• WM content can be viewed as a set of symbolic states reflecting the ongo-
ing conversation: tokens, named entities, current topics, discourse struc-
ture, etc.
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Rewrite Rules as Operators on Memory: To connect and utilize these
memory stores,

• There are rules for reading from LTM into WM (e.g., retrieving back-
ground knowledge relevant to the current conversation).

• There are rules for writing from WM back into LTM (e.g., if new stable
patterns have emerged, store them as new long-term rules or increase the
probability of existing rules).

• There are rules for transforming WM states to predict the next token.
These are akin to the attention+feedforward steps in a transformer, but
implemented as probabilistic rewrite steps that match current WM pat-
terns to candidate next-token predictions.

5.4.2 The Next-Token Prediction Cycle

Given these additional memory structures, at each step of predicting the next
token, we have the following processes:

Input and WM State:

• The model receives the current partial text input: a sequence of tokens
already generated or observed.

• The WM currently holds a symbolic representation of the last few tokens,
extracted features, thematic concepts, and possibly inferred causal rela-
tionships relevant to the text (e.g., a character in a story, a topic under
discussion).

Selecting Rewrite Rules for Next-Token Prediction (ActPC):

• A set of rewrite rules attempts to match the current WM state.

• Each rule may propose a candidate next token, or propose reading certain
knowledge from LTM to refine the decision.

• ActPC manages the probability distribution over these rules, pushing more
plausible rules (those that historically reduced predictive error) to be con-
sidered first.

Causal Reasoning (AIRIS) in WM:

• If certain transitions predicted by the rules conflict with the narrative
logic observed so far, AIRIS steps in to refine or add causal conditions.
For example, if the text implies a character cannot be in two places at
once, but a rule tries to generate a token sequence violating this logic,
AIRIS will introduce a condition preventing that rule’s application unless
it can be reconciled with a new explanation.
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• Over time, AIRIS-derived rules ensure that the next-token predictions
respect causal, logical, and narrative constraints rather than producing
hallucinations that contradict previously stated facts.

Probabilistic Abstraction (PLN) for Generalization:

• PLN monitors patterns of tokens and the conditions in which certain next-
token predictions were successful or not.

• Based on inductive reasoning, PLN may propose a new abstract rewrite
rule: for example, if the model often sees that after certain discourse
markers ("On the other hand, ...") the text structure follows a particular
rhetorical pattern, PLN may create a generalized rule.

• This abstract rule then competes with or complements more specific rules,
and through ActPC, the probability of applying this abstract rule increases
as it proves useful.

Continuous PC Integration for Additional Modalities (Optional):

• If the textual input references an image or another modality, a continuous
PC submodule processes that modality and updates WM with a symbolic
feature representation of the image, audio, or sensor reading.

• Rewrite rules can incorporate these features from WM into next-token
decisions, e.g., generating a token describing an image attribute.

Memory Interaction and Attention-Like Behavior:

• Instead of direct self-attention, rules can look up related patterns in WM
and LTM:

• Retrieval rules from LTM to WM might say: "If the current topic is ’cli-
mate change’ and we are discussing policy from 10 tokens ago, bring forth
stored abstract rules about ’argumentation structure for policy discus-
sion."’

• Thus, attention-like operations are carried out by rewriting: a rule matches
the current WM pattern and says "pull in relevant knowledge from LTM,"
effectively focusing "attention" on certain background patterns.

• Similarly, if a certain piece of knowledge in LTM is frequently used given
current WM patterns, ActPC will boost rules that retrieve it, making re-
trieval cheaper and more likely, mimicking how attention increases weights
for relevant tokens in a transformer.
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Updating the Rewrite Rules Themselves:

• After predicting the next token, the actual token arrives. ActPC computes
prediction error: if the chosen rule’s prediction was correct or close, it
increases that rule’s probability; if not, probability shifts away.

• If persistent errors occur in certain contexts, AIRIS introduces or refines
rules with new conditions. PLN might generalize a different rule to cover
these cases.

• Occasionally, stable new patterns discovered in WM can be written into
LTM as a new permanent rule. For instance, if the model repeatedly finds
that when a certain thematic pattern appears, the next tokens follow
a known rhetorical sequence, it stores a new set of rules encoding this
sequence as a stable pattern.

Long-Term Stability and Adaptation:

• Over many episodes of reading or generating text, the system builds a
large library of rewrite rules in LTM, some focusing on low-level token
transitions and others on high-level discourse and causal logic.

• AIRIS ensures that blatantly illogical transitions are pruned or restricted
by adding conditional logic.

• PLN ensures that as the system encounters more texts, it can generalize
and handle unseen constructions without brute-force memorization.

5.4.3 Putting It All Together

We have proposed a memory-enhanced transformer-like architectures intended
for operation in an ActPC-Chem++ setting, involving:

• A next-token prediction loop driven by rewrite rules adapting via ActPC.

• AIRIS continuously refining causal conditions to maintain logical/narrative
consistency.

• PLN introducing probabilistic generalizations to handle new patterns.

• WM and LTM acting as dynamic contexts and knowledge bases, managed
entirely by rewrite rules rather than static embeddings or learned matrices.

• Attention-like behavior emerges from rule-driven retrieval and relevance
operations rather than dot-product computations.

This approach creates a transformer-like system but grounded in a fundamen-
tally different learning paradigm, potentially reducing hallucinations and en-
hancing interpretability and logical consistency in language modeling – and
most critically, providing a clear way to connect the power of transformer-like
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dynamics to the other sorts of cognitive processing needed to make a human-like
mind or an AGI/ASI with greater than human capabilities.

The potential benefits of this approach include:

• Analogy to Transformer Layers: Each "layer" in a standard transformer
can be replaced by a round of rewrite-rule applications on the WM state.
Instead of Q-K-V attention, we have "retrieval rewrite rules" that pull
relevant patterns from LTM into WM. Instead of MLP feedforward layers,
we have "transformational rewrite rules" that interpret the current WM
pattern and propose next tokens or intermediate conceptual tokens.

• Context and Coherence: Over multiple prediction steps, the WM acts
like the transformer’s context window, but rules can adjust what stays in
WM longer or shorter than a fixed context length. Important narrative
or logical elements can be retained longer via special rewrite rules that
maintain them in WM or store them in LTM for quick retrieval when
relevant again.

• Reducing Hallucinations: Hallucinations often stem from spurious corre-
lations in large language models. Here, AIRIS identifies when a predicted
token breaks causal/logical coherence and imposes conditions on rules to
prevent recurrence of that illogical pattern. PLN can also abstract away
from superficial patterns and focus on deeper logical or semantic regular-
ities, guiding the model to more grounded predictions.

• Continuous Improvement: As reading and generation continues, new rules
appear, old ones are pruned or refined, and probabilities adjust. The sys-
tem’s knowledge base evolves continuously, guided by ActPC error mini-
mization, AIRIS causal logic, and PLN’s higher-level abstractions.

5.5 Approaches to Hierarchical Layering
We now give a few more comments on how hierarchical layering might be worked
out in such an architecture, combining the hierarchical nature of transformers
with the multiple varieties of symbolic learning that can be integrated into the
process in the ActPC-Chem setting.

In a transformer, we have multiple sequential layers, each containing atten-
tion and feedforward sub-layers. Similarly, we can organize our rewrite-rule
architecture into multiple "layers." Each layer is a collection of rewrite rules
that process the working memory (WM) state and produce a refined version of
it.

The lower layers might contain rules that handle simpler, more direct pattern
completions, such as token-level co-occurrences or frequently seen local syntactic
patterns. As we go up the layers, we encounter increasingly abstract rules.

For example, we might say:
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• Lower Layer Rules: Deal with immediate local token predictions: "Given
tokens [’The’, ’cat’, ’sat’], a likely next token is ’on’." These rules are
relatively direct and rely mostly on local context.

• Mid-Layer Rules: Start to incorporate causal logic (AIRIS) or medium-
range dependencies. They might reason: "Given we’ve established that
the story involves a cat indoors, and previously we mentioned a sofa, the
next likely token describing where the cat sat is ’on the sofa’ rather than
’on the mat’."

• Higher Layer Rules (PLN and High-Level AIRIS): In upper layers, we
apply rules that capture conceptual abstractions or narrative coherence.
These might incorporate probabilistic logical inferences (PLN) and com-
plex causal reasoning (AIRIS) to ensure that the generated text follows
consistent, high-level patterns (e.g., character motivations, thematic con-
sistency, or logical consistency across long sequences).

At each layer, ActPC ensures that the probability distributions over rules in
that layer adapt based on prediction error and reward signals. Over time, the
system "learns" which abstract patterns are beneficial and which aren’t, just as
a transformer learns higher-level representations in upper layers.

5.5.1 Integrating With the Memory Structure:

The dynamics of interaction between different layers in the network and the
different memory stores may be interesting. For instance, lower layers might
primarily transform the current WM state based on local context, while higher
layers might also pull information from LTM or refine conditions introduced by
PLN and AIRIS. Thus, each layer can be viewed as a stage where the WM state
is transformed, enriched, and made more coherent before moving on to the next
layer.

5.5.2 Attention Mechanism via Rule Selection

In a standard transformer, attention selects parts of the input sequence to focus
on using a dot-product-based mechanism that yields attention weights. In the
rewrite-rule paradigm, instead of computing attention weights, each "attention-
like" step involves a set of rules that look for patterns within the WM state
(and possibly query LTM). For instance, a rule might say:

• "If WM contains mention of a certain entity and a previously unresolved
reference, retrieve related information from LTM."

The presence of a pattern that matches these conditions effectively acts like
"attending" to that portion of the WM context. If the pattern is found and the
rule is triggered, it brings relevant content or constraints to the forefront.
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Probabilistic Selection as Attention Weights: The probability of select-
ing a particular rule (guided by ActPC’s prediction error minimization, along
with other mechanisms such as ECAN) acts somewhat like an attention weight.
Rules that consistently bring helpful context or correct predictions gain higher
probability, making them more likely to be triggered in similar future contexts.
Over time, the system learns a distribution of "which rules to attend to" for
particular states.

Contextual Focus Emerges Dynamically: As different rules compete or
cooperate, the system naturally "focuses" on the relevant segments of WM or
LTM. This is akin to attention heads in a transformer: multiple sets of rules can
operate in parallel, each focusing on different aspects of the context. Some rules
might specialize in attending to named entities, others to temporal sequences,
others to thematic consistency.

5.5.3 Feedforward Sublayers as Rewrite Transformations

A transformer’s feedforward sub-layer takes the output of the attention sub-
layer and transforms it through a series of nonlinear operations, producing a
refined embedding.

To see how dynamics conceptually resembling the feedforward dynamics
within transformers might emerge via ActPC-Chem rewrite rules:

• In our architecture, the "feedforward" step can be represented by a set of
rewrite rules that transform the current WM representation into a more
predictive form. For example:

• After attention-like rules bring relevant context into WM, feedforward-like
rewrite rules might reshape or combine tokens and concepts into a more
structured pattern that leads directly to next-token prediction.

• These rules might insert intermediate symbolic concepts (similar to latent
embeddings) that bridge low-level token patterns and higher-level nar-
rative elements. For instance, "Given the context, transform the concept
[’cat’, ’location’] into a predictive pattern [’cat_on_sofa’]"-a more specific
concept that can lead to a suitable token prediction like "on the sofa".

• Compositionality and Nonlinearity: The feedforward step in a transformer
is nonlinear. In the rewrite-rule paradigm, nonlinearity emerges from
the conditional and probabilistic nature of rule selection. A rewrite rule
doesn’t just linearly transform embeddings; it might trigger a complex
conditional pattern insertion or removal, effectively performing nonlinear
transformations on the symbolic representation.

ActPC Refinement of Feedforward Rules: As with attention-like steps,
ActPC adjusts the probabilities and conditions of these feedforward-like rules
over time. If certain transformations consistently reduce prediction error, they
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become more probable and stable. If they fail, the system modifies or replaces
them, possibly guided by AIRIS (to insert logical conditions) or PLN (to gen-
eralize or specialize the transformations).

5.5.4 Cohesive Integration across the Network

Layer-by-Layer Processing, in this setting, could flow something like:

• Start with the input tokens and some initial WM state.

• Layer 1 (Low-Level Rules): Apply attention-like rewrite rules to find rel-
evant local patterns. Then apply feedforwardlike rewrite rules to refine
or combine these patterns, producing a WM state better prepared for
prediction.

• Layer 2 (Intermediate-Level Rules): Possibly incorporate AIRIS condi-
tions to ensure causality or logic. Attention-like rules here might focus
on medium-range dependencies (e.g., consistency with events mentioned
above), and feedforward-like rules might add abstracted concepts derived
by PLN.

• Layer N (High-Level Rules): At the top layers, the rewrite rules might
rely heavily on PLN-derived abstractions and AIRIS-induced causal pat-
terns. The attention-like rules here focus on very high-level narrative
or logical structure, pulling relevant background knowledge from LTM.
Feedforward-like rules transform these abstractions into a final pattern
leading to coherent, contextually appropriate next-token predictions.

Multiple Parallel Heads and Distributed Attention: We can conceptu-
alize multiple "heads" of attention as different sets of rewrite rules operating in
parallel. Each set of rules competes or cooperates to transform the WM, cap-
turing different facets of the context (e.g., semantic similarity, syntactic role,
narrative continuity).

End-to-End ActPC Updates: At the end of the next-token prediction cy-
cle, the observed token is compared with the predicted distribution. ActPC’s
error-driven update affects:

• Which attention-like rules get more or less probable,

• Which feedforward-like transformations are favored,

• How conditions introduced by AIRIS and abstractions from PLN affect
future rule application.

Over time, in this way, the entire stack of rewrite-rule layers evolves to pro-
duce increasingly accurate and contextually rich next-token predictions, mim-
icking how a transformer’s layers learn richer representations but now driven
by a continuous cycle of local pattern matching, probabilistic selection, and
error-driven adjustment rather than backprop gradients.
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5.5.5 Hopeful Summary of the Architecture

By structuring the rewrite rules into stacked layers (mirroring transformer lay-
ers), using pattern matching and rule selection as a form of attention, and em-
ploying conditional rewriting operations as a feedforward step, we replicate the
functional components of transformer layers in a probabilistically-driven, non-
backprop paradigm. AIRIS ensures causal/logical coherence, PLN helps form
useful abstractions, and ActPC continuously tunes the probability distribution
over rules for all these processes.

5.6 Rough Architecture Visualizations
5.6.1 Language Processing Architecture Sketch

Integrating many of these ideas, below is an ASCII-style architecture diagram
illustrating the transformer-like NLP system described. It’s a high-level concep-
tual diagram, capturing the main components (Layers, WM, LTM, Rule Sets)
and their interactions. While crude, it does provide a structured overview of
some of the key the modules and data flows.
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Key Concepts:

• Each layer consists of sets of rewrite rules that:

• "Attend" to parts of WM and possibly retrieve relevant patterns from
LTM (Attention-like).

• Apply transformations to WM states (Feedforward-like).

• Are updated probabilistically by ActPC to minimize prediction error.

• Higher layers incorporate AIRIS for causal logic and PLN for abstract
probabilistic reasoning.
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• The WM (Working Memory) is repeatedly updated as we pass through
layers, gradually refining the representation until the system produces a
next-token prediction.

• LTM (Long-Term Memory) provides a store of learned rewrite rules, causal
conditions (AIRIS), and abstract patterns (PLN). Layers may query LTM
to bring additional context into WM.

• ActPC continuously adjusts the probabilities of applying certain rules
based on prediction errors, ensuring the system evolves toward more ac-
curate and coherent predictions.

This diagram shows the data flow from input tokens into WM, through
multiple layers of rewrite-rule transformations (replacing standard transformer
layers), culminating in a next-token output. The integration of AIRIS and PLN
occurs mostly in the higher layers and in the structure of rules stored in LTM.

5.6.2 Talking Robot Bug Architecture Sketch

Extending and complementing the above diagram and in a similar spirit, below
is an ASCII-based conceptual diagram integrating all the discussed components
into one "conversing robot bug" software architecture.

This diagram is high-level, focusing on modules and data flow rather than
code-level details. It shows how traditional predictive coding (PC) networks
handle perception and actuation, while discrete ActPC, AIRIS, PLN, and mem-
ory structures (WM, LTM) support symbolic reasoning, language processing,
and causal inference. The layered transformer-like architecture for language is
also included, along with multimodal integration.
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Notes:

• Continuous PC modules handle raw sensory input (vision, audio) and mo-
tor signals, producing stable latent features/receiving action commands.

• WM holds the current linguistic/contextual and conceptual state of the
conversation and scenario.

• Layers of discrete ActPC-driven rewrite rules perform functions analogous
to transformer attention and feedforward, enriched by AIRIS (causal rules)
and PLN (abstract inference).

• LTM stores long-term learned patterns, rules, and abstractions, which
areretrieved into WM as needed.

• The entire system’s choice of rules is driven by ActPC’s error minimiza-
tion, ensuring continuous adaptation and improvement.
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• The robot bug can converse, referencing its perceptions and actions; the
integration ensures logically coherent and contextually rich responses.

This diagram shows the integrated system: sensor and motor loops at the
bottom (via continuous PC), a discrete rewrite-rule-based "transformer-like"
stack in the middle (with AIRIS, PLN, and ActPC guiding rule probabilities),
and memory structures (WM and LTM) enabling context, abstraction, and
causal logic. The result is a coherent multi-level architecture where language
production, perception, action, and logical inference all mesh together.

5.7 Integrated Predictive Error Handling Across Lan-
guage, Perception, Action and Cognition

We wrap up this section on transformer-like ActPC-Chem architectures with
some speculative analysis of integrated predictive error handling across the
whole network governing a hypothetical "talking robot bug" operated using
ActPC based components throughout, including transformer-like rewrite rule
networks, rewrite rule networks for cognition and planning, and traditional
ActPC neural networks for perception and action.

In this integrated ActPC-Chem approach, the entire cognitive stack of the
robot bug—encompassing perception, action, and transformer-like language generation—
is grounded in predictive coding principles and implemented through a network
of evolving rewrite rules. Each subsystem (perception, action, language) main-
tains internal probability distributions over sets of rules or continuous feature
distributions, all of which are adapted online, in real time, via local prediction
error minimization. This unified predictive-coding-based substrate ensures that
errors detected in one subsystem can be coherently propagated and addressed
in conjunction with errors arising in other subsystems.

5.7.1 Integrated Error Management

Consider for instance the scenario where the robot bug verbally requests a spe-
cific piece of “red” food from a collaborator, gesturing with its grabber. The
collaborator returns a different piece of food than intended. Several sources of
prediction error arise:

Perceptual Prediction Error: . The bug’s vision system, implemented as a
continuous predictive coding (PC) subnetwork, had previously assigned a high
probability to categorizing the item as “red.” Given the outcome, it becomes
apparent that the color perception was too coarse. The correct categorization
might need to be “light red” or “pinkish-red,” reflecting a finer-grained perceptual
classification. To correct this, the continuous PC network that encodes visual
features zvis will adjust its latent distributions:

eperception = DKL

(
q(features | light-red) ∥ p(features | red)

)

80



Here, DKL denotes the Kullback–Leibler divergence (or a similar measure)
quantifying the mismatch between the observed spectral properties of the food
item and the previously hypothesized “red” category. The PC inference process
will then nudge the internal representations and rule probabilities associated
with color categories toward a refined color taxonomy.

Action Prediction Error: . The bug’s motor system, another continuous
ActPC network, made predictions about how a certain arm gesture would ap-
pear to the collaborator. If the collaborator misidentified the referenced food
because the gesture was ambiguous from their vantage point, the action rules or
continuous motor control distributions need adjusting. The transformation that
maps the intended pointing direction a to the observed collaborator response
yields a prediction error:

eaction = DKL

(
q(collaborator_interpretation | a) ∥ p(collaborator_interpretation | a)

)
Minimizing this error involves reconfiguring the rewrite rules or continuous

control distributions to incorporate perspective-taking: perhaps the bug needs
to shift its pointing angle or add an additional clarifying movement. Since all
action selection is guided by predictive coding, the system can experimentally
vary action rules and select those that reduce future action-related errors.

Language Prediction Error: . The language subsystem, implemented as a
discrete ActPC-chem transformer-like network, introduced a rule that produced
the phrase “that red food over there.” Given the final outcome, it is clear
that this phrasing was not sufficiently discriminative. The language model thus
encounters an error:

elanguage = DKL

(
q(outcome | “that red food over there”) ∥ p(outcome | “that red food over there”)

)
Here, the “outcome” includes the collaborator’s incorrect item selection. The

discrete rewrite rules that govern reference generation and descriptive phrasing
must now be updated. More precise descriptors—e.g., referencing size, shape,
or spatial location more explicitly—might reduce this error.

Coordinated Correction Across Subsystems: . Because each layer—
perception, action, language—uses a form of predictive coding and handles
distributions over rewrite rules or latent feature spaces, prediction errors feed
back into local rule probability shifts. The key is that these subsystems are
not isolated. The robot’s cognitive architecture relies on the same underlying
ActPC-chem principles everywhere, so errors from the language layer can influ-
ence which perceptual distinctions to emphasize or which action rules to update.
Conversely, improved perceptual categorization or more perspective-aware ges-
turing can feed back to the language layer, prompting it to refine the lexical
and syntactic rewrite rules used for object references.
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Role of PLN and Analogical Reasoning: . Probabilistic Logic Networks
(PLN) provide a mechanism to introduce analogical and abductive reasoning
into this process. Suppose the language subsystem struggles to choose the right
descriptive phrase. PLN can search long-term memory (LTM) for past situations
in which similar requests were made successfully. For example, if previously say-
ing “the small red apple on the left side of the table” led to correct item selection,
PLN can propose analogous patterns for the current scenario. PLN might infer
that, since “adding spatial qualifiers” worked before, similar expansions (e.g.,
“the lighter red piece of fruit near the corner”) should be tried now.

Formally, PLN might compute a probability that a certain descriptive pat-
tern will lead to correct interpretation based on similarity to prior successful
patterns:

p(success | new_descriptor) = f(analogical_similarity, past_successes)

By considering analogies and known successes, PLN generates candidate
variations of language rules. These candidate variations are then tested by
ActPC: each candidate rule is assigned an initial probability, and the system
experimentally applies these rules in future interactions. Outcomes feed back
as prediction error signals that raise or lower the probabilities of these PLN-
inspired variants.

5.7.2 Integrated Adaptive Cycle

The overall adaptive process involved here, identifying and responding to predic-
tive errors and triggering cognitive processes in various modules and at various
levels as a result, looks roughly like:

• Error Identification: The collaborator’s incorrect response triggers a top-
down re-evaluation: The system identifies that something about color
naming, gesturing, or phrasing was off.

• Local Adjustments: Each subsystem (visual features, action trajectories,
linguistic descriptors) tries local rewrites or continuous distribution up-
dates to better align predictions with reality. These updates occur con-
tinuously and locally via ActPC, without global backpropagation.

• PLN Proposals: PLN reviews the memory of past successful communica-
tions and proposes new linguistic (or even action-related) patterns analo-
gous to previous successes. These proposals appear as additional rewrite
rules or modifications to existing ones.

• Experimental Variation and Probability Shifting: The system attempts
these new PLN-suggested patterns in subsequent requests. If prediction
errors diminish, these variants gain higher probability and become stable
policies. If not, they are discarded or refined further.
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Because the entire architecture relies on probability distributions and pre-
diction error minimization at multiple levels—continuous PC for perception
and actuation, discrete ActPC-chem for cognition and language, and PLN for
guided analogical variations—the correction of errors can be coordinated across
all layers. Instead of patching one component at a time, the system discovers
correlated improvements that harmonize perception, action, and language. This
holistic error-correction cycle endows the robot bug with robust adaptability,
able to refine its behavior incrementally and coherently as it interacts with the
world and other agents in real-time.

6 Conclusion
In this paper, we have presented a speculative yet moderately well fleshed out
and conceptually very rich approach to creating a flexible, hybrid AI architecture
called ActPC-Chem, which we envision as a potential "cognitive kernel" for
future AGI systems, fitting in especially closely with variations of the PRIMUS
cognitive architecture.

By grounding both data and models in a metagraph of rewrite rules, and
using Active Predictive Coding (ActPC) principles as the primary adaptation
mechanism, we have outlined a path toward integrating continuous sensorimotor
control with discrete symbolic and causal reasoning. Implementation-wise, this
sort of large-scale rewrite rule based system fits very naturally with the MeTTa
language and other components of the OpenCog Hyperon system. Conceptually,
we may say the approach is inherently open-ended and autopoietic –capable
of continuously inventing and refining new patterns of thought and behavior
– while still capable of being guided by goal-driven reinforcement signals and
structured by logical constraints.

We have explored how this approach could be used to control virtual or
robotic experientially learning agents – using animated or robotic bugs as ex-
amples. We have argued that this setup naturally facilitates the seamless in-
tegration of symbolic reasoning (e.g., via AIRIS for causal inference and PLN
for probabilistic logical abstraction) on top of a substrate that already handles
perception and action through ActPC-based continuous PC networks.

We have also explored how a transformer-like network can be adapted into
this framework, replacing backpropagation-based weight updates with locally
applied rewrite rules and probability shifts driven by predictive coding error
signals.

Each of these explorations fits very naturally with the potential use of
ActPC-Chem within the PRIMUS architecture implemented on the Hyperon
substrate, though they are also compatible with other choices of cognitive ar-
chitecture and implementation framework.

The overall idea is a holistic cognitive architecture where perception, action,
and language can be co-adapted in real time, guided by predictive error mini-
mization and informed by analogical reasoning and causal logic. Such a system
promises to yield robust, context-sensitive, and internally coherent behavior
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without resorting to massive, offline training cycles, and without requiring un-
realistic amounts of computational resources.

Looking forward, there are numerous key directions for future work, includ-
ing:

• Theoretical Refinement: While the principles outlined here are plau-
sible and conceptually appealing, deeper mathematical and algorithmic
formalisms are needed. E.g.

– further formalizing the discrete natural gradient updates and optimal
transport-based geometry

– formalizing the interrelation between discrete and continuous ActPC
networks

– formalizing and further analyzing the role of ECAN-driven rule se-
lection in ActPC-Chem

– formalizing and further analyzing the probabilistic causal and infer-
ential modeling done in PLN and AIRIS with discrete-ActPC error
measurement and correction

– understanding which subsets of GSLT are most promising for exper-
imentation with increasingly more complex base-level rewrite rules
for ActPC

– attempting to rigorously analyzing convergence properties and com-
putational complexity of the overall system under various assump-
tions

will all be valuable to ensuring that ActPC-Chem networks can scale to
real-world complexity.

• Practical Implementation: Implementing ActPC-Chem in actual code
and integrating it into the OpenCog Hyperon platform will be a significant
step toward turning these ideas into a workable system. Incremental proto-
types can be tested on simpler tasks within virtual environments, allowing
stepwise validation of each component – continuous PC perception/action,
discrete rewrite-rule adaptation, AIRIS causal logic, PLN-driven analogi-
cal inference, and transformer-like token prediction.

• Gradual Expansion Toward PRIMUS-Based AGI: As the kernel
matures, more elements of the PRIMUS cognitive architecture can be lay-
ered on top. Over time, one can incorporate richer commonsense knowl-
edge bases, structured world models, and increasingly sophisticated forms
of memory and reasoning. By starting small – perhaps with virtual-world
scenarios – developers can gradually add complexity until a framework
capable of yielding a robust, human-level AGI emerges.

• Experimental Evaluation in Virtual and Physical Realms: The
Sophiaverse virtual world, and particularly its Neoterics sub-world, pro-
vides an ideal environment for early experimentation. Agents can be
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trained and tested in these controlled yet richly interactive virtual spaces,
allowing for rapid iteration and refinement of the ActPC-Chem principles.
Subsequently, translation into real-world robotics – such as the Mind Chil-
dren humanoid robots – would test the approach in noisy, dynamic, and
physically embodied settings.

If successful, this line of research could play a major role in the inevitably
emerging paradigm shift away from monolithic backprop-trained networks to-
ward more evolving, self-organizing cognitive architectures. Such architectures,
if built with ActPC-Chem as a core ingredient, would unify perception, ac-
tion, language, logic, and abstraction within a single predictive-coding-oriented
framework, opening the door in this way to genuinely flexible, adaptable, and
eventually AGI and ASI-level intelligence.
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